
NASA Contractor Report 189606

/J/ I/i/
/ •

/

t

Advanced Transport Operating System (ATOPS)
Control Display Unit Software Description

Christopher J. Slominski
Mark A. Parks
Kelly R. Debure
William J. Heaphy

Computer Sciences Corporation
Hampton, Virginia

Prepared For
Langley Research Center
under Contract NAS1-19038
January 1992

National Aeronautics and
Space Administration

Langley Research Center

Hampton, Vi;ginia 23665-5225

([;ASA-CR-I_9606) ADVANCED TRANSPORT

LJPERATING SYSTEM (ATOPS) CQNTRQL O[SPLAY

U'_IT S3FfWA_E DFSCR[PTION (Computer

Sciences Corp.) 347 p CSCt 098

G3/06

N9Z-24689

Unclas

0086862



-2-

6.2.2

6.2.3

6.3.2

6.3.3

ROUTE TRANSLATION AND PATH DEFINITION ........ 83

CREATE BUF ................................. 84

DEMODE ..................................... 85

DSC WPT .................................... 87

FIND CCD ................................... 88

LOCAL_ERAD ................................. 89

PATH ....................................... 90

PATHDF ..................................... 92

RTA TIMES .................................. 93

RTE ........................................ 94

TRIM_WPTS .................................. 96

WPT ........................................ 97

XLAT RTE ................................... 99

EXECUTE/REJECT THE MODIFIED FLIGHT PLAN ...... 101

EXECUTE .................................... 102

HOLD SET ................................... 104

REJECT ..................................... 105

THE FLIGHT PLANNING PAGES ...................... 107

THE DEPARTURE/ARRIVAL PAGE ................... 109

DA INPUT ................................... 115

DEPARR ..................................... 116

INDX INPUT --. .............................. 117

ITEM_ADDR .................................. 118

ITEM_COUNT ................................. 119

MODIFY ..................................... 120

MOD ROUTE .................................. 122

PAGE_COUNT ................................. 123

REFRESH DA ................................. 124

SET_SIDLINE ................................ 125

THE DIRECT/INTERCEPT PAGE .................... 127

DIRECT ..................................... 131

INTC MGR ................................... 132

INTERCEPT .................................. 133

THE HOLD PAGE ................................ 135

GET_ETA .................................... 141

HOLD_INIT .................................. 142

HOLD__ INPUT ................................. 143

HLD_MGR .................................... 145

HLDWPT ..................................... 146

INDX ........................................ 147

LENGTHS .................................... 148

POINTS ..................................... 149

PROJPOINT .................................. 150

REFRESH_HOLD ............................... 151



-3-

6.3.4

6.3.5

6.3.6

THE LEGS PAGE ................................ 153
ADD WPT .................................... 157
ALTX ....................................... 158
BOUNDS..................................... 159
DSP WPTS ................................... 160
HLD END .................................... ]62
HLD IN ..................................... 163
HLD-POS .................................... 164
INBOUND .................................... 165
INTC END ................................... 166
KILL WPT ................................... 167
LEGS ....................................... 168
LEG END .................................... 170
LEG MGR .................................... 171
NEWCTR..................................... 172
NEWENTRY .................................. 173
NEXT WPT ................................... 174
NMBRS...................................... 175
PAD NAME ................................... 176
PROGNUM ................................... 177
SET PG ..................................... 178
SPLIT ...................................... 179
STEPS ...................................... 180
WPNAME..................................... 181
WPT ADDR ................................... 182
WPT DATA ................................... 183

THE LEGS TIME PAGE ........................... 185
DSP TIME ................................... 189
ECHOTIME .................................. 190
LEG TIME ................................... 191
TIME IN .................................... 192

THE ROUTEPAGE ............................... 193
ACT EXIT ................................... 199
AIRPORT .................................... 200
BREAK ...................................... 201
CLEAN PPT .................................. 202
COMPANY.................................... 203
DATA IN .................................... 204
DEL IN ..................................... 206
DEL RTE .................................... 207
DSC CHECK .................................. 208
ECHO ....................................... 209
ENTRY WPT .................................. 210
EXIT ....................................... 211
EXIT WPT ................................... 212
FIND PPT ................................... 213
FIND RTE ................................... 214
GROUP...................................... 215
INIT PLAN .................................. 217



-4-

6.3.7

7.0
7.1

7.2

7.3

INTC WPTS .................................. 218
INT LEG .................................... 220
KILT ....................................... 222
MAKE WPT ................................... 223
MERGE ...................................... 224
NEWPOS .................................... 225
OPEN ....................................... 226
ORGRWY .................................... 227
PROGSCR ................................... 228
REMOVE..................................... 229
ROUTE ...................................... 230
RTE ID ..................................... 231
RTE INTC ................................... 232
RTE WPT .................................... 234
SEQUENCE................................... 235
SLASH ...................................... 236
TITLE ...................................... 237
TYPE WPT ................................... 238
UPDATE ..................................... 239
WAYPOINT ................................... 241
WPT ID ..................................... 243
XYPOS ...................................... 245

THE ROUTE INDEX PAGE ......................... 247
PGA ........................................ 251
RTENDX ..................................... 252

THE INITIALIZATION AND REFERENCEPAGES ......... 253
THE INIT/REF INDEX PAGE ........................ 255

INITREF ...................................... 259
THE SYSTEMIDENTIFICATION PAGE ................. 261

IDENT ........................................ 265
THE REFERENCENAVIGATION DATA PAGE ............. 267

AIR INPUT .................................... 271
AIR PAGE ..................................... 272
CLEAR ENTRY .................................. 273
LIST INPUT ................................... 274
LIST PAGE .................................... 275
MAGV--......................................... 276
NAME LEN ..................................... 277
NAME PTR ..................................... 278
NAV INPUT .................................... 279
NAVPG ........................................ 280
PROCESSAIRWAY ............................... 281
PROCESSARP .................................. 282
PROCESSGRP .................................. 283
PROCESSNAV .................................. 284
PROCESSRWY .................................. 285
REFRESH...................................... 286
SET CENTER ................................... 287
SET LIST ..................................... 288
SUBNAVINPUT ................................. 289



-5-

7.4

7.7

7.8

7.9

7.10

7.11

8.0

THE INITIAL POSITION PAGE ...................... 291
INITPOS ...................................... 295
INITUP ....................................... 296
STRIPR ....................................... 297

THE EPR LIMIT PAGE ............................. 299
EPRLIM ....................................... 303

THE PROGRESSPAGE .............................. 305
ACTION ....................................... 311
PROGRESS..................................... 312

THE PERFORMANCEINITIALIZATION PAGE ............ 315
PFINIT ....................................... 319
PFINP ........................................ 320
FUEL LIM ..................................... 324

THE STATUSPAGE ................................ 325
STATPG ....................................... 329
STNDRDINP ................................... 330

THE APPROACHREFERENCEPAGE .................... 331
APPREF ....................................... 335
VREFLU ....................................... 336

THE TAKEOFFREF PAGE .......................... 337
TKOFF ........................................ 343
TKOFFINP ..................................... 346
PROCDEL ..................................... 350
MANUAL ....................................... 351
INTRP ........................................ 352
EPRTO ........................................ 353
TOSTBP ....................................... 354

THE GPSS PAGE ................................. 355
GPSPG ........................................ 359
SHOWGPS ..................................... 360

THE PHASE OF FLIGHT PAGES ...................... 361
CLIMB ........................................ 369
CRUISE ....................................... 370
DESCENT...................................... 371
FLT TYPE ..................................... 372
FLT TYPE INP ................................. 374
FIND TOD ..................................... 377
CHNGPG ...................................... 378
SPEEDB ........ ,............................... 379
PROGLN ...................................... 381
RTA LN8 ...................................... 382
RTA--LN9 ...................................... 383
RTA LNI0 ..................................... 384



9.0 THE FIX PAGE ................................... 385
FIX INFO ..................................... 391
OUT RAD ...................................... 393

FIX INP ...................................... 394

FUNC INP FIX ................................. 395

DATA INP FIX ................................. 397

DEL FIX ...................................... 399

CH FIX PG .................................... 400

FIX INIT ..................................... 401

COMP ABRAD ................................... 402

FIND LEG AB .................................. 403

UNITVEC ...................................... 404

FMIN ......................................... 405

FIX ERAD ..................................... 406

AB IP LL ..................................... 407

COMP RAD ..................................... 408

FIND LEG RAD ................................. 409

F ANG(X, Y, ANG) ............................. 410
COMP ANG ..................................... 411

POS INFO ..................................... 412

COMP IP DTG .................................. 413

FIX DISP ..................................... 414

Appendix A PATH DEFINITION COMPUTATIONS ............. 415



-7-

LIST OF FIGURES

1.0
2.0
2.1
3.0
4 0
6 1
6 2
6 3
6 4
6 5
6 6
6.7
6.8
6.9
6.10
7.0
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
8.0
8.1
8.2
9.0
9.1

The Control Display Unit ....................... ii
CDU Untranslated Key Codes ..................... 14
CDU Translated Key codes ....................... 15
CDU Output Codes ............................... 21
Error Codes & Messages ......................... 32
The Departures & Arrivals Index Page ........... iii
The Arrivals Page ..., .......................... 113
The Direct/Intercept Page ...................... 129
The Legs Hold Page ............................. 137
The Hold Page .................................. 139
The Legs page .................................. 155
The Legs Time Page ............................. 187
The Route Page (#I) ............................ 195
The Route Page (#2) ............................ 197
The Route Index Page ........................... 249
The Init/Ref Index page ........................ 257
The System Identification Page ................. 263
The Navigation Data Page ....................... 269
The Initial Position Page ...................... 293
The EPR Limit Page ............................. 301
The Progress Page (#I) ......................... 307
The Progress Page (#2) ......................... 309
The Performance Initialization Page ............ 317
The Status Page ................................ 327
The Approach Page .............................. 333
The Takeoff Page (#I) .......................... 339
The Takeoff Page (#2) .......................... 341
The GPSS select Page ........................... 357
The Climb Page ................................. 363
The Cruise Page ................................ 365

The Descent Page ............................... 367

The Fix Page ................................... 387

Nav Display Fix Example ........................ 389





-9-

Section 1.0 INTRODUCTION TO CDU SOFTWARE

The following sections of this document describe the

CDU software which runs on the Flight Management/Flight

Controls VAX computer on-board the TSRV. All the software,
with the exception of two small modules, is built into the

flight management background process SLOW. The remaining

modules, CDUFST and KEYBRD, serve as the CDU's foreground

interface and are built into the processes FMFAST and HDL

respectively. CDU applications running in the background

means that no definitive timing exists for the repetitive

scheduling of CDU operations and the software may be inter-

rupted at any point by time critical foreground software.

Data structures shared by both background and foreground

must be synchronized through software flags.

Two important functions of the CDU software include

the management of the CDU interactive display and the

flight management functions performed in assisting the

flight crew in choosing and following a flight plan.

Operations performed with CDU software affects the air-

crafts guidance, navigation, and display software. The

actual CDU hardware is a Lear-Siegler unit having 14

display lines of 24 character width. There are also

5 programmable display lights on the face of the key-

board. Besides alphanumeric data keys, there are six line

select keys (LSK) on each side of the display area. See

figure 1.0.

I_ _______.INT_:,,T_0_._LtY _ pRIBCEDtNG PAG_c BtANK NOT Ft,LMED





-11-

0

®®®
®®®
®®®
@@@

(figure 1.0)

PA_f.__) tN]'ENT.IONALLYBLA,N_ PI:_="CE:D'INGPAC,£ BLANK NOT FILMED





-13-

Section 2.0 CDU INPUT DATA

Input to the CDU comes from two sources. Most CDU

data is received from flight crew entries on the Lear-

Siegler keyboard, however data input for the CDU software

may also come from the data-link. Information on data

link I/O is contained in the CDU data-link description

(section 5).

Keyboard entries received by CDU software are of two

types; function and buffered data. Function entries consist

of one key code (one byte of data) while data entries have

one to 16 bytes of ASCII data followed by a termination key

code. The termination code is from either a line select key

or the sampled scratch pad code, 'FF' hex. The key codes

sent by the Lear-Siegler unit are non-standard character

codes which must be translated into usable data for CDU

software. The module KEYBRD performs the translation upon

receiving the data in the I/O handler process (HDL). The

alphanumeric codes are mapped into their ASCII counterparts

for ease of use in the software. Figures 2.0 and 2.1 show

the codes both before and after the translation process.

Once the code translation is complete the data is stored

in the global input buffer, ENTRY. The first byte of ENTRY is

set to the key code count. All function entries will have

the count byte set to one, data entries will be from two to

seventeen. Note that when the CDU applications have finished

processing the keyboard input, the count byte is cleared.

Data entry is initiated by any alphanumeric keystroke.

At that time the CDU will automatically clear all of line

#14 (CDU data entry line), then echo the character at the

start of line #14 (the CDU is now in data entry mode).

During data entry mode any line #14 update sent to the CDU

from the host computer will be ignored. When a function key

is selected during data entry mode the function code will be

immediately sent to the host, with no effect on the current

scratch pad entry. The CLR function will not be passed to

the host computer unless the scratch pad is inactive. When

data entry is in progress, the CLR will be used by the CDU

to either delete one or all characters from the scratch pad

depending on duration of selection. When all characters are

deleted from the scratch pad the CDU will exit data entry

mode and allow line #14 updates. When data entry is

completed by a LSK selection the scratch pad line is cleared

and data entry mode is canceled.

Data buffering by the CDU may be disabled by the host

software. When this situation arises the CDU scratch pad

will be cleared and disabled. Neither direct key entry

nor host software scratch pad programming will place the CDU

in data entry mode. Note that line #14 of the display

screen will always be available as a display line when data

buffering is disabled. All key entries, including line select

keys, will be sent immediately as single key function

entries (count = I). This process will continue until the

host computer commands the re-enabling of data buffering.

PRECEDING PAGE BLANK NO[ FILMED



-14-

Figure 2.0

KEY

CDU UNTRANSLATED KEY CODES

CODE KEY CODE KEY CODE

00H K 20H

01H P 21H

02H U 22H

03H Z 23H

LSK L2 04H F 24H

LSK L1 05H A 25H

LSK R1 06H LEGS 26H

LSK R2 07H RTE 27H

1 08H L 28H

4 09H Q 29H

7 0AH V 2AH

0BH (BLANK) 2BH

LSK L4 0CH G 2CH

LSK L3 0DH B 2DH

LSK R3 0EH DEP ARR 2EH

LSK R4 0FH CLB 2FH

2 10H M 30H

5 IIH R 31H

8 12H W 32H

0 13H DEL 33H

LSK L6 14H H 34H

LSK L5 15H C 35H

LSK R5 16H HOLD 36H

LSK R6 17H CRZ 37H

3 18H N 38H

6 19H S 39H

9 IAH X 3AH

+/- IBH / 3BH

NEXT PAGE ICH I 3CH

FIX IDH D 3DH

DIR INTC IEH PROG 3EH

INIT REF IFH DES 3FH

NOTE (i) : CLR KEY CODE FOR KEY ENGAGED

< 1/2 SEC 48H, > 1/2 SEC C8H

0 40H

T 41H

Y 42H

43H

J 44H

E 45H

EXEC 46H

47H

CLR (I) 48H

PREV PAGE 49H

NI LIMIT 4AH

4BH

4CH

4DH

4EH

4FH

CLR (i) C8H



-15-

Figure 2.1 CDU TRANSLATEDKEY CODES

HEX VALUE KEY

00
01-0C
0D-0F

10
ii
12
13
14
15
16
17
18
19
IA
IB
IC
ID
IE
IF

2O
21
22
23
24-2C
2D
2E
2F

30-39
3A-3F

40
41-4F

50-5A
5B-5F

60-FE
FF

line select 1-12

INIT REF
DIR INTC
N1 LIMIT
RTE
LEGS
FIX
CLB
DEP ARR
CRZ
HOLD
DES
PROG
PREV PAGE
NEXT PAGE
EXEC

(blank)
short CLR
long CLR
DEL

0-9

scratch pad terminater





-17-

Section 3.0 CDU OUTPUTDATA

The CDU display screen consists of 14 lines of 24
characters each. The top and bottom lines are referred to
as the title and scratch pad lines respectively. The
title line identifies the active CDU display page and the
scratch pad line is alternately used as a data entry and
warning display line. The lines in between are identified
as line #i through #12. Typically odd numbered lines are
used as label lines where text is written in small font.
The even numbered lines except #12 are normally used as
data entry and display lines. Line #12 often has special
control tags such as "ERASE>". The six line select keys
on each side of the display correspond to label/data line
pairs. For example the top LSK is positioned between
lines #I and #2.

The data transmission to the Lear-Siegler Control
Display Units is a variable length byte stream consisting of
character codes (OOH- 7FH) and special functions (8OH -
FFH). The visible representation for each character code is
shown in figure 4, page 26 of the Design Requirement Speci-
fication for the CDU. Only a subset of the existing symbols
is used by CDU software. Figure 3.0 outlines the symbols
and their hex codes used for the NASA CDU software. The
minimum amount of data that can be modified in one update is
one 24 character line on the display. However any number of
lines may be updated at once. The CDU software sets the

flag IOWAIT when a block of data is complete. CDU software

remains idle until the I/O handler process transmits the

data to the CDU I/O processor (CVIU) and clears the flag.

The utility procedure FMTOUT is used to build the CDU

output buffer. This module inserts the special control

codes into the data stream for the applications software

when called with the various parameters available. The next

section describes the use of FMTOUT.

The remainder of this section describes the special

control codes placed in the output buffer. The sign bit of

all function codes is set, therefore CVIU software parsing

the transmitted data can quickly identify leading, trailing,

and embedded functions. The high order nibble of a function

byte is the function identifier and the low order nibble is

the function qualifier. Therefore there are eight distinct

CDU functions (8xH - FxH), each having 16 qualifiers.

The following pages describe each of the defined function

identifiers and the effect of the various qualifiers.

PAn--IN _E_J/JLJ_LLY I_L,_/t_

PRECEDING PAGE. BRAN1( NOT FILMED



-18-

FUNCTION "8X" (I000 .... binary); CLEAR LINE

This function is used to blank a line on the CDU display.
The qualifier bits designate which line is to be cleared.

Since there are 14 display lines on the CDU screen valid

values for this function are 81H through 8EH.

The count function "Ax" is placed immediately following

the clear line function to blank a number of contiguous

lines of the display.

The entire screen can be cleared by the two bytes "81H,
AEH".

FUNCTION "9x" (i001 .... binary) ; UPDATE LINE

This function is used to replace all 24 characters on a

CDU display line. The qualifier bits designate the line

which will be updated. The count function "Ax" can follow

the update function to replace a number of consecutive lines.

Valid values for this function are 91H through 9EH.

Directly following the updated function, or the count

function if supplied, are the ASCII character bytes used to

fill the designated line(s). For example, the following 25

bytes place an ASCII zero, "0", in each character position of
line number three.

93H, 30H, 30H, ...... 30H

FUNCTION "Ax" (1010 .... binary); LINE COUNT

This function is used to make the clear and update

functions (Sx and 9x) work over a range of display lines.

The count function is valid only when immediately succeed-

ing the other two functions in the data stream.

The valid set of values for this function are AIH

through AEH.



-19-

FUNCTION "Bx" (i011 .... binary); sample scratch pad

This function requests immediate sampling of the CDU
scratgh pad. The qualifier bits are undefined for this
function. When the "Bx" function is received any current
data entry is terminated and sent to the host computer as if

a LSK was pressed by the pilot. The scratch pad is cleared

and data entry mode is disabled. The termination byte,

normally the selected LSK code, will be FFH.

When no data exists on the scratch pad just the

terminator code is sent just like an LSK press with no data

(ie count byte = I).

FUNCTION "Cx" (Ii00 .... binary); SET MODE

The mode function handles several miscellaneous CDU

operations. In particular there are eight mode commands

(COH - C5H, CEH, CFH) which are described below.

- CO -

This code is the end of transmission byte which is always

the last byte of the data block.

- C1 -

Mode qualifier "i" causes the CDU to be initialized.

After this byte is processed the display screen is clear,

all lights are off, video is standard, data entry is

disabled and data buffering is enabled.

- C2 -

Sets standard video. All text written to the CDU after

receiving this function will have the standard video

characteristic. Note that this code may be imbedded within

an ASCII text string.

- C3 -

Sets reverse video. All text written to the CDU after

receiving this function will have the reverse video

characteristic. Note that this code may be imbedded within

an ASCII text string.

- C4 -

Disables CDU data buffering. Keystrokes will be sent

immediately to the host computer as function entries.



-20-

- C5 -
Enables CDU data buffering. Data may be entered on the

scratch pad by manual entry or software programming.

- CE -
Selects pilot's CDU. This function (or CF) must always

be the first byte of the data sent to the CDU. This byte
is always followed by the CDU "lights" byte described below.

- CF -
Selects co-pilot's CDU. This function (or CE) must

always be the first byte of the data sent to the CDU. This

byte is always followed by the CDU "lights" byte described

below.

CDU lights byte:

This byte is always the second byte of a transmission from

the host computer. The low-order 5 bits represent the

desired status of the CDU lights (bit set = light on).

The bits are assigned as follows.

0 FAIL

1 DSPY

2 MSG

3 OFST

4 EXEC

I) Note that when the MSG light is on, no scratch pad entry

may be started by either keyboard entry or scratch pad

programming with function "Dx". Any entry on the scratch

pad when MSG is set on can be finished and transmitted with

a LSK.

FUNCTION "Dx" (ii01 .... binary); SCRATCH PAD UPDATE

Function D is used to place a text string into the scratch

pad as if it had been manually entered via the keyboard. The

qualifier bits indicate the number of characters in the update

string (offset by one; 0 means I, F means 16). Note the

string of characters immediately follows the function byte.
Valid values for this function are D0H - DFH. The three

bytes given below would clear the scratch pad of any existing

entry and place the text "i0" into the scratch pad area.

Note that the CDU will be in data entry mode after receiving

a "D" function.

DIH, 31H, 30H



-21-

Figure 3.0 CDU OUTPUTCODES

00-0F
10-19
IA-IF
20-22
23
24
25
26
27-3F
40
41-5B
5C
5D
5E
5F
60
61-7A
7B
7C
7D-FF

small font digits (0-9)

standard ASCII
degrees F
degrees
standard ASCII
degrees C

standard ASCII

box

standard ASCII

standard ASCII

standard ASCII

small font alphabet

standard ASCII





-23-

Section 3.1 CREATING OUTPUTWITH FMTOUTCALLS

Background CDU software creates a block of data
to refresh part or all of the CDU display screen with
calls to FMTOUT. The format of the call is as follows:

INTEGER*2 PAD, LENGTH, CODE
BYTE STRING(*)

CALL FMTOUT(PAD, STRING, LENGTH [, CODE] )

Each call appends data to the current output buffer being
built for transmission to the CDU. The display codes at
"STRING" are added to the current line after padding with
"PAD" blanks. Note that all 24 characters of a line do not

need to be supplied. FMTOUT will extend all short lines

with blanks anytime a short line is terminated. The

optional code parameter is an integer value with several

defined bit fields. CODE is used to designate the start of

a new line, enable reverse video, program the scratch pad,

clear the screen, send special function codes, or terminate
the buffer to cause transmission.

There are predefined symbols used to create the CODE

word. The individual symbols must be added together

to produce the final integer parameter.

To send a literal string to FMTOUT use %REF() or a

Hollerith constant.

LINE0 - LINE13

VIDEO -

SCRTCH -

EOT -

CLS -

FCTN -

starts new line

string written in reverse video

initialize scratch pad to string

finished updating current buffer
clear CDU screen

string consists of special functions

The following example code segment creates one complete

update for the CDU. The change consists of new top and

bottom lines on the screen. The top line will have the text

"EXAMPLE PAGE" preceded by 2 blanks and followed by i0. The

bottom line will have the text "HELLO THERE FRED" followed

by 9 blanks. Note that FRED will be written in reverse
video.

CHARACTER*I2 TITLE

INTEGER*4 USER

TITLE = 'EXAMPLE PAGE'

USER = 'FRED'

CALL FMTOUT(2, %REF(TITLE), 12, LINE0)

CALL FMTOUT(0, %REF('HELLO THERE'), II, LINE13)

CALL FMTOUT(I, USER, 4, VIDEO + EOT)

PI:_ECEDING PAGE BLANK NOT FILMED
pAt__ tNIENTIONALLY BLAf_





-25-

Section 4.0 CDU EXECUTIVE

This section contains the module descriptions for CDU

executive software. The executive software performs

miscellaneous functions that are independent of the

currently displayed CDU page. There are five modules

described in this section. The remaining executive modules

are associated with the data-link portion of the CDU and are

described in section 5. The majority of the CDU exec-

utive sofware, including data-link, is found on the file

CDUEXC.FOR.

Af '"TF.T,0 AttYBLA 
pR_)tt',tG PAc._E BtA ,_'Vw-NOT F,'_..MED



-26-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

CDUEXC
CDUEXC.FOR
SLOW
SLOW
CALL CDUEXC

PURPOSE:
TO manage those CDU functions which are independent

of the current CDU display page.

DESCRIPTION:
This module performs several miscellaneous operations

for the CDU software. Since most sections of the module
are unrelated, the operations are simply itemized below in
the order found in CDUEXC.

Cause transmission of the CDU initialize code on start
up of the software.

Inhibit all CDU software until the I/O handler has

completed last output.

Initialize output buffer with the predifined start byte

and the CDU lights byte.

Call MESSAGE MGR upon detecting data-link inputs•

_. Call EXEC FCTN to handle special CDU function entries

not destined for specific page manager sofware.

Compute the barometric pressure altitude correction

value and issue baro-set alert when traversing the

18,000 foot threshold.

Call active page manager software.

Perform auto-update of waypoints every ten seconds

when required by 'POS' type waypoints. Calls

UPDATE POS.

Manage "North-up" map display center position.

• Place appropriate error messages into CDU output

buffer when problems detected by the various page

managers. Errors will be placed in the buffer each

time a new one is generated until the CLR key has

been pressed to acknowledge the error. At that time

the error message is replaced with the original

scratch pad entry which caused the error• Warning

messages are only sent out one time. Acknowledgement

by CLR entry is not required for these• See figure

4.0 at the end of this section for error codes and

their associated message.



-27-

GLOBAL REFERENCES:

VARIABLES
ALTCOR BARSET* BARSFT* CDUCNT* CDU INIT* CDU MODECTRF*
ERCODE* IOWAIT LT DSPY LT EXEC LT WAIL LT MSG* LT OFST
MODCNTPGINIT* PGRQST*POSTIME* TYMETIME--VLD --

ARRAYS
ENTRY LOKWPTMESSAGEOLDPAGE*

RECORDARRAYS
WPT MOD

FUNCTIONSAND SUBROUTINES
EXEC FCTN FMTOUTLINK CMD MESSAGEMGR SELECT UPDATE POS



-28-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

EXEC FCTN
CDUEXC.FOR
SLOW
CDUEXC
CALL EXEC FCTN(SAVE, ER_FLAG)

PURPOSE:
TO process CDU function entries not intended for the

current CDU page display module.

DESCRIPTION:
When CDUEXCreceives a function entry it calls

EXEC FCTN to determine if the entry is the type handled
by the executive. If not, EXEC_FCTNreturns and the entry
is used by the current page display module.

The types of function entries handled by EXEC FCTN
are listed below along with a brief description of--the
actions taken.

. CDU page selection; The function keycode is used as an
index into a page ID array and placed in the page change
request variable (PGRQST).

. Clear key (long or short press); If an error message is
displayed it is replaced with the data entry which caused
the error by a call to RECALL. The message light is also
turned off. When no error message is shown this function
simply blanks the bottom CDU line.

Execute key; When the execute light is not on this
function is ignored. Otherwise if there is a provisional
flight plan it is made active by a call to EXECUTE. When
neither condition is true the execute function is assumed
to be handled by the current page display software.

If none of the above were true and an error message is
currently displayed then the entered function (LSK,
PREV/LAST page, or DEL) is ignored.

Delete key; The scratch pad line is programmed with the

word "DELETE". Typically this text will be placed at a

particular display line with a LSK to designate the
deletion of a certain CDU item.

GLOBAL REFERENCES:

VARIABLES

ERCODE LT EXEC PGRQST* PMODE

ARRAYS

CDUBUF* ENTRY*

FUNCTIONS AND SUBROUTINES

EXECUTE FMTOUT RECALL



-29-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

RECALL
CDUEXC.FOR
SLOW
EXEC FCTN, MESSAGEMGR
CALL RECALL(SAVED_ENTRY)

PURPOSE:
To recall erroneous data entry.

DESCRIPTION:
When CDU entries cause error message displays the

erroneous entry is saved in a buffer "SAVE". The entry
is programmed back into the scratch pad by RECALL. Note
that when no text exists for reprogramming (function entry
error for example) the only action is to clear the bottom
CDU display line.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
FMTOUT



-30-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:
CALLS TO:

SELECT
SELECT.MAR
SLOW
CDUEXC
CALL SELECT(PAGEID)
DSP DUMP, INITREF, IDENT, INITPOS,
PFINIT, TKOFF, APPREF, NAVPG, STATPG,
ROUTE, CLIMB, CRUISE, DESCENT, LEG__MGR,
RTENDX, EPRLIM, PROGRESS,INTC_MGR,
DEPARR, FIX INFO, HLD_MGR, LEG_TIME,
TEST, RTENDX

PURPOSE:
Call the appropriate page manager subroutine.

DESCRIPTION:
The variable "PAGE" contains the index of the current

CDU display page. During each iteration of the CDU
executive, the module SELECT is called to perform the
corresponding call to a page manager listed in a local
address table. Note that the values for "PAGE" have
predefined symbolic names assigned in the file CODES.CDU.

GLOBAL REFERENCES:none



-31-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

UPDATEPOS
CDUEXC?FOR
SLOW
CDUEXC
CALL UPDATEPOS

PURPOSE:
To update the "POS" type waypoint with current aircraft

parameters.

DESCRIPTION:
A provisional flight plan may begin with a "POS" type

waypoint which does not become stationary until the flight
plan has been executed. The position, altitude, and speed
of the pilot defined waypoint are updated every i0 seconds to
the values of the aircraft. The module DEMODEis called to
incorporate the changes into the provisional flight plan.

The variable POSTIME is set to the update time by CDUEXC.
During every iteration, POSTIME is compared to the current
aircraft time to check for i0 seconds elapsed. When this
occurs the call to UPDATEPOS is made. Note that a POSTIME
value of zero corresponds to no "POS" waypoint to update.

GLOBAL REFERENCES:

VARIABLES
ALTCOR GS LAT LON

RECORDARRAYS
PPT WPT* WPT MOD

FUNCTIONSAND SUBROUTINES
DEMODEFIND PPT



-32-

ERRORCODESAND MESSAGES

i) INVALID DATA ENTRY
2) CHECKAIRFIELD
3) NOT FOUNDIN MEMORY
4) BUFFER OVERFLOW
5) DEAD KEY ERROR
6) ENTRY WPTNOT DEFINED
7) INVALID EXIT WPT
8) BAD RADIUS AT XXXXX
9) NO DATA
I0) DEAD WAYPOINTERROR
II) BAD DATA FORMAT
12) ENTRY OUT OF RANGE
13) INVALID DELETE
14) ILLEGAL ASSIGNMENT
15) FIX ALREADY SPECIFIED
16) NO ABEAMRADIAL

EXAMPLES

LSK can be used for neither data nor function entries

LSK cannot be used for data entries (function OK)

LSK cannot be used for function entries (data OK)

NEXT or PREV cannot be used

Programmed DELETE unacceptable

5

1

9

5

13

Allowed data entry is unacceptable because ...

unrecognizable data 11

. recognized data can't be used because

data base search failure 3

below or above acceptable value range 12

specific value improper in context 14

codes 2, 4, 6, 7, 8, I0, 15 & 16 are for specific cases

-figure 4.1-



-33-

Section 5.0 CDU DATA-LINK

One method of input to CDU software is through the
TSRV data-link. This method is used to receive clearance
information sent by ground controllers. The CDU also is
used for data-link outputs when composing messages and
sending clearance requests to the ground station.

Two blocks of memory are allocated for data-link
I/O in the global section IPLCOM. The data at these
locations is transmitted between the FM/FC VAX and the
data-link computer every 50 milliseconds. The input area
consists of 102 bytes of memory. The first 2 bytes are
labeled CDU CMD and are used as a bit control word for
commands from the data-link computer. The remaining 100
bytes (LINK IN) may contain a text string uplinked from the
ground statTon. The memory allocated for output is a 202
byte block. The first 2 are bytes used as a control word
to be sent to the data-link computer to describe the text

data stored in the remaining 200 bytes. The first word is

labeled MSG CNT and the text block is CDU MSG. MSG CNT

uses the low byte as a character count of the data in

CDU_MSG. MSG_CNT is not updated until the CDU background

software has completed the entire text buffer. The high
byte of MSG CNT is used to control the use of the text

buffer by the data-link computer. When composing a text

message or sending the current provisional flight plan

to the data-link computer this byte is zero. When the

processing of a new clearance sent by the data-link computer
is complete it will be set to FFH, unless an error in the

uplinked clearance was detected. With a clearance error

the byte will contain the character count of an error

message appended to the text buffer. The total length of

the text buffer is then the sum of the low and high bytes
of MSG CNT.

The CDU executive calls the module LINK CMD each

iteration of the background process to check--for any data

link commands in CDU CMD. The variable CDU MODE is set

by LINK CMD to signal MESSAGE MGR (called by CDUEXC) to

initiate message handling by the various CDU data-link

modules. The remainder of this section contains module

descriptions for all the CDU data-link procedures.



-34-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

ADD PLAN
LINK.FOR
SLOW
LINK RT
CALL ADD_PLAN(WPT_NAME)

PURPOSE:
TO prepare the provisional flight plan for the

insertion of the new data-link clearance waypoints.

DESCRIPTION:
This procedure is called with the name of the first

waypoint of the new clearance. The current flight plan
is searched for a match of the input waypoint. If it
is not there the old flight plan is removed and the
input waypoint is made the first of the new plan. When
the waypoint does exist in the current flight plan all
waypoints after it are removed. Note that the waypoint
may be part of a route function, in which case the
procedure must make the input waypoint the new exit
waypoint of the route function.

GLOBAL REFERENCES:

VARIABLES
ACTCNT ACTION*

ARRAYS
ENTRY* RTE CNT*

RECORDARRAYS
RTE MOD* WPTMOD

FUNCTIONS AND SUBROUTINES
BOUNDSFILL RTE RTE WPT WPTADDR



-35-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

BEG RTE
LINK.FOR
SLOW
LINK PD
CALL BEG RTE(RTE BUFFER INDEX)

PURPOSE:
To prepare the provisional route buffer for proceed

direct assignment.

DESCRIPTION:
BEG RTE modifies the provisional route buffer so that

the entry indicated by the input parameter RTE BUFFER INDEX
becomes the second element of the route buffer? To do this
it may eliminate elements, open a new slot at the start, or
simply leave the buffer alone (already #2) depending on the
value of RTE BUFFER INDEX.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
KILL OPEN



-36-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

BYTE IN
CDUEXC.FOR
SLOW
MESSAGEMGR
CALL BYTE IN

PURPOSE:
To handle CDU keyboard entries during data-link message

composition mode.

DESCRIPTION:
When BYTE IN is called one CDU key code resides in the

CDU input buffer, ENTRY. The action taken depends on the
type of key entered. If it was a page change or execute
key it is simply passed on to the current page software

called later by the executive. If a line select or delete

key was pressed the entry buffer is cleared and the key is

ignored. All other keys affect the CDU message being com-

posed. A short clear removes the last character from the

text while a long clear clears the entire message. Any

other key received is an alphanumeric which is appended

to the message buffer.

GLOBAL REFERENCES:

VARIABLES

FUNC MSG CNT

ARRAYS

CDU MSG* ENTRY*



-37-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

DELIMIT
LINK.FOR
SLOW
LINK_EA, LINK PD, LINK RT
CALL DELIMIT(TEXT, CNT7 DONE)

PURPOSE:
TO parse the data-link clearance message.

DESCRIPTION:
This procedure parses the input string TEXT searching

for either a " " or ":" character which are the only

valid terminaters. The string length is returned in CNT

and the boolean flag DONE is returned when at the end of

the clearance message (":" encountered).

GLOBAL REFERENCES: none



-38-

MODULENA/ME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

EXPANDRTE
LINK.FOR
SLOW
DEMODE,LINK_CMD, REJECT
CALL EXPANDRTE

PURPOSE:
TO create an expanded data-link text buffer for the

data-link display.

DESCRIPTION:
When the flight crew desires to request a clearance,

the current provisional flight plan is formatted into
the data-link display buffer for transmission to the
data-link computer. This is performed when the initial
request is received and each time the provisional flight
plan is changed during clearance request mode. This
procedure steps through the provisional flight plan
storing data into the display buffer with calls to
TEXT OUT. The destination airfield and cruise altitude
are also formatted into the buffer.

GLOBAL REFERENCES:

VARIABLES
CRZALT MSGCNT

ARRAYS
AIRPTS CDU MSG* RTE CNT

RECORDARRAYS
RTE MOD

FUNCTIONS AND SUBROUTINES
FILL OUT FSTRNGGET LONG TEXT OUT TYPE WPT



-39-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:

CALLING SEQUENCE:

FILL OUT
LINK_FOR
SLOW
MESSAGE_MGR,LINK_EA, LINK_RT,
TEXT_OUT, EXPANDRTE
CALL FILL OUT(COUNT, BUFFER)

PURPOSE:
To fill data into the data-link message buffer.

DESCRIPTION:
The data specified by the input parameters is appended

to the data-link display buffer that is built when flight
plan clearance information is received. A display buffer
pointer is maintained to account for the append position.

GLOBAL REFERENCES:

VARIABLES
MSGCNT*

ARRAYS
CDU MSG

FUNCTIONS AND SUBROUTINES
LIB$MOVC3



-40-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

FILL RTE
LINK?FOR
SLOW
LINK PD, ADD PLAN

w

CALL FILL RTE(INDEX, ADDRESS)

PURPOSE:

TO make a data-link waypoint entry in the route buffer.

DESCRIPTION:

FILL RTE is called to fill in waypoint information in

the provisional route buffer at the position indicated

by the input parameter INDEX. If the address of the

waypoint is supplied as a non-zero value, the waypoint

is simply entered into the buffer position. Its type

is determined by the function WPT TYPE. When the address

parameter is zero, FILL RTE creates a "POS" pilot defined

waypoint at the current aircraft position and inserts the

created waypoint data into the route buffer. The function

MAKE WPT is used to create the waypoint.

GLOBAL REFERENCES:

VARIABLES

ALTCOR GS LAT LON

RECORD ARRAYS

RTE MOD*

FUNCTIONS AND SUBROUTINES

MAKE WPT TYPE WPT



-41-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

LINK CMD
LINK.FOR
SLOW
CDUEXC
CALL LINK CMD

PURPOSE:
TO serve as the data-link software executive.

DESCRIPTION:
LINK CMD is called by the CDU executive (CDUEXC) every

pass through the background software. It monitors the
data-link control word received from the data-link computer
to initiate the appropriate actions for the specific data
link commands.

The bits of the data-link control word (CDU CMD) are
assigned as follows.

CDU message composition mode
Clearance information received
Insert clearance as provisional flight plan
Erase previously received clearance
Clear current message composition buffer
Send current provisional flight plan to data-link

LINK CMD looks for a change in state of the CDU CMD bits,
performing certain operations when a bit changes from
off to on and others for changes from on to off.

The Insert command from the data-link computer requires
special checking in LINK_CMD. If a provisional flight plan
already exists when the Insert clearance is commanded the
uplinked flight plan is not placed into the guidance buffer.
Instead an error message is appended to to expanded flight
plan text in CDU MSG. The software then waits for another
Insert command. When the second Insert is issued and the
provisional guidance buffer is finished LINK CMD restarts
the parsing of the uplink clearance. This occurs since the
changes to the flight plan which were being made may alter
how the clearance affects the current flight plan. When the
clearance processing is complete the insertion occurs
immediately without response from the data-link computer.

Note that clearance commands may occur during CDU data
link output sequences; data composition or clearance
requests. LINK CMD will save the current output data to
make room for the overriding clearance data. When the new
clearance sequence is finished the CDU will be restored to
the previous state of data-link output.



-42-

GLOBAL REFERENCES:

VARIABLES
ACTION CDU CMD CDU MODE* CRZALT* LNK CNT LNK CRZ MSGCNT*
NEWCMD PMODEPOSTIME* SQUATTIME

ARRAYS
AIRPTS CDU MSGLNK ARPT LNK RTE MSGBYT* RTE CNT* WX DEF

RECORDARRAYS
RTE ACT RTE MOD

FUNCTIONS AND SUBROUTINES
DEMODEEXPANDRTE LIB$MOVC3



-43-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

LINK EA
LINK.FOR
SLOW
MESSAGEMGR
CALL LINK_EA(MESSAGE, INDEX, ERR TEXT)

PURPOSE:
To handle expected altitude clearances from the data-link.

DESCRIPTION:
The input to LINK EA is the parameter MESSAGE. It

contains all the uplinked clearance following the "EA"
field found by MESSAGEMGR. The remaining parameters are
outputs. INDEX is the pointer into the data-link input
buffer LINK IN. It is updated to point to any clearance
following the EA data. ERR TEXT is filled with text
information when an error is detected while parsing the
EA data.

The only data used in the EA clearance is an altitude
assignment. The entry is decoded by the function ALTX.
The message for the data-link display is created and
stored in CDU MSGand the altitude value is saved in the
global variable LNK_CRZ.

GLOBAL REFERENCES:

VARIABLES
ACTION* ERCODELNK CRZ*

FUNCTIONS AND SUBROUTINES
ALTX DELIMIT FILL OUT ISTRNG LIB$MOVC3



-44-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

LINK PD
LINK.FOR
SLOW
MESSAGEMGR
CALL LINK PD(MESSAGE, INDEX, ERR TEXT)

PURPOSE:
TO handle Proceed Direct clearances from the data-link.

DESCRIPTION:
The input to LINK PD is the parameter MESSAGE. It

contains all the uplTnked clearance following the "PD"
field found by MESSAGEMGR. The remaining parameters are
outputs. INDEX is the--pointer into the data-link input
buffer LINK IN. It is updated to point to any clearance
following the PD data. ERR TEXT is filled with text
information when an error is detected while parsing the
PD data.

When LINK PD is called it finds the waypoint name
supplied in MESSAGEin the navigation data base, AADCOM.
Once identified, a search of the provisional route buffer is
made to determine if the waypoint exists on the provisional
flight plan. If it does, all the waypoints preceding the
selected waypoint are replaced by an auto-update "POS"
waypoint, the remainder of the flight plan is not altered.
When the selected waypoint is not part of the provisional
flight plan a provisional flight plan consisting of an
auto-update "POS" waypoint and the selected waypoint become
the only two provisional flight plan waypoints.

Note that the actual route buffer manipulations are
performed through calls to BEG_RTEand FILL_RTE.

GLOBAL REFERENCES:

VARIABLES
ACTION* ERCODEMSGCNT

ARRAYS
CDU MSG* ENTRY* RTE CNT*

RECORDARRAYS
RTE MOD

FUNCTIONS AND SUBROUTINES
BEG RTE BOUNDSDELIMIT FILL RTE GET LONG KILL LIB$MOVC3

m

TEXT OUT WPT ADDR



-45-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

LINK RT
LINK?FOR
SLOW
MESSAGEMGR
CALL LINK_RT(MESSAGE, INDEX, ERR TEXT)

PURPOSE:
To handle route clearance messages from the data-link.

DESCRIPTION:
The input to LINK RT is the parameter MESSAGE. It

contains all the uplinked clearance following the "RT"
field found by MESSAGEMGR. The remaining parameters are
outputs. INDEX is the pointer into the data-link input
buffer LINK IN. It is updated to point to any clearance
following the RT data. ERR TEXT is filled with text
information when an error is detected while parsing the
RT data.

ART clearance consists of one or more waypoints for
the aircraft flight plan. Origin and destination air-
fields may be supplied also. The waypoint data can
appear in several forms. Including individual waypoints,
airway segments, standard instrumentation departures (SID),
standard terminal arrivals (STAR), approaches, and implicit
runway waypoints. The different types of multiple waypoint
constructs are collectively referred to as route functions.

LINK RT starts by using the procedure DELIMIT to
parse the input message. Each item in the clearance
is separated and saved for later processing in a
waypoint/route function list. If the first entry in the
list is an origin airfield a total reclearance is made.
Note that a previously entered flight plan can only be
erased when the aircraft is on the ground. When the last
entry is an airfield it is used as the destination airport.
When no destination has been entered, manually or by data-
link, the destination is assumed to be the same as the
origin.

There are three situations that are identified to
prepare the provisional route for the new clearance.
If the origin airfield was supplied, a completely new
clearance is made. This means all previous waypoints are
eliminated and the "new plan" flag is set which effects
the processing in the module "RT NEW". When the clearance
is a SID, STAR or APPROACHno flight plan preparartion is
needed since these always replace existing pieces or come
at the very beginning or end of the flight plan. Other
clearances are modifications to the existing flight plan
which requires a call to ADD PLAN to prepare the provisional
guidance buffers. Once the preparation phase is complete
LINK RT steps through each item of the list with a call to
RT NEWto enter the flight plan.



-46-

GLOBAL REFERENCES:

VARIABLES
ACTION* ERCODEMSG CNT SQUAT

ARRAYS
AIRPTS CDU MSG* RTE CNT*

FUNCTIONS AND SUBROUTINES
ADD PLAN DELIMIT FILL OUT LIB$MOVC3 LUARP RT NEWTEXT OUT



-47-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

MESSAGEMGR
CDUEXC.FOR
SLOW
CDUEXC
CALL MESSAGE_MGR(ENTRY_RESTORE_BUFFER)

PURPOSE:

TO manage the creation of data for the CDU MSG data-link

output buffer.

DESCRIPTION:

MESSAGE MGR uses the global index CDU MODE to determine

the action required. It is not called when CDU MODE is set

to zero.

When CDU MODE is set to -I a new clearance has been

received. The cryptic text uplinked from ground control

must be expanded into more meaningful text for display to

the flight crew on the data-link display. The expanded

text is stored in the data-link output buffer CDU MSG. A

new provisional flight plan is also created from _he up-

linked clearance. The original clearance data is saved

while the called modules create the new one. After

processing is complete the original is restored and the

new data is saved to be available when the flight crew
chooses to "INSERT" the data-link clearance into the

flight plan. There are four different types of clearance

messages, and one or more will be found in a new data-link

clearance. They are denoted by the following 2 letter

code in the input text.

RT

PD

EX

EA

Route clearance

Proceed direct to a position

Expected arrival clearance

Expected altitude

The module LINK_RT is called for both the RT and EX types.

The PD and EA types are processed by calls to LINK PD and

LINK EA respectively.

When CDU MODE is set to 1 a sequence of events is started

for the data-link text message composition on the CDU

scratch pad line. On each iteration of the CDU executive

one of the follwing steps is taken.

CDU MODE = i:

t_ the CDU.
The CDU scratch pad sample request is sent
CDU MODE is set to 2.

CDU MODE = 2: If the sample scratch pad has arrived the

sampled data is saved, the CDU is commanded into no

data buffering mode, and CDU MODE is set to 3.



-48-

CDU MODE= 3: The CDU remains in this mode until the
composition text is complete. Each key entry on the
CDU is appended to the current text buffer and the
last 20 chracters of the text are output to the
CDU scratch pad.

CDU MODE= 4: This mode is set by the module LINK CMD
when message composition termination is detected.
MESSAGEMGRcommands the CDU back into scratch pad
buffering of text and reprograms the scratch pad
with any data that existed there before composition
mode was started.

GLOBAL REFERENCES:

VARIABLES
CDU MODE* ERCODELNK CNT* LNK CRZ* MSGCNT* SAVE CNT TIME

ARRAYS
AIRPTS* CDU MSGENTRY LINK IN LNK ARPT* LNK RTE MESSAGE
MSG BYT* RTE CNT* SAVE MOD

RECORDARRAYS
RTE MOD

FUNCTIONS AND SUBROUTINES
BYTE IN FILL OUT FMTOUTGET WORDLIB$MOVC3 LINK EA LINK PD
LINK RT RECALL SHOWMESSAGE



-49-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

RT NEW
LINK.FOR
SLOW
LINK RT
CALL RT_NEW(NAME,LENGTH, NEW_PLAN)

PURPOSE:
To enter clearance data into the flight plan.

DESCRIPTION:
RT NEW is called with three input parameters from the

procedure LINK RT. The first is the name of a route item
such as a waypoint or airway. The length of the name is
the second parameter and the third is a flag indicating
whether or not the current clearance was a new flight plan.

This module identifies the type of clearance entry and
calls the appropriate subroutine to store the information
in the flight plan being created for the received data-link
clearance. The only clearance allowed when NEWPLAN is
false is a departure/arrival type entry. These--are handled
with a call to MODIFY. The NEWPLAN type entries include
departure/arrivals, waypoints, and airways. The waypoint
entries are placed in the flight plan with a call to
WAYPOINTwhile other types use a call to GROUP.

GLOBAL REFERENCES:

VARIABLES
ERCODE*LINE* MSGCNT

ARRAYS
CDU MSG* RTE CNT

RECORDARRAYS
RTE MOD

FUNCTIONSAND SUBROUTINES
GET_LONGGROUPMODIFY RTE ID TEXT OUT TYPE WPT WAYPOINTWPT ID



-50-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

SHOWMESSAGE
CDUEXC.FOR
SLOW
MESSAGEMGR
CALL SHOWMESSAGE

PURPOSE:
TO display the composed data-link message on the CDU.

DESCRIPTION:
SHOWMESSAGEis called when the data-link computer has

placed the CDU in message composition mode. In this mode
the pilot creates a message intended for the ground
controllers. This module writes the text "MSG>" to the
CDU scratch pad and appends the last 20 characters of the
message.

GLOBAL REFERENCES:

VARIABLES
MSG CNT

ARRAYS
CDU MSG

FUNCTIONS AND SUBROUTINES
FMTOUT



-51-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

TEXT OUT
LINK.FOR
SLOW
LINK_PD, LINK RT, RT NEW, EXPANDRTE
CALL TEXT OUT(ADDRESS, TYPE)

PURPOSE:
To store expanded message text for data-link display.

DESCRIPTION:
TEXT OUT is called with an address of a route buffer item

and its--type. The item may be a waypoint or a route func-
tion. The following list describes the text stored in the
data-link display buffer for the various types of route
elements.

GRP or PPT waypoint - the waypoint name

other waypoints - AADCOMtext associated with WPT

Airways - the word VICTOR or JET followed by the

airway number

SID/STAR/APPROACH - AADCOM text associated with the

route function followed by the

text APPROACH, DEPARTURE, or

ARRIVAL

GLOBAL REFERENCES:

VARIABLES

MSG CNT

ARRAYS

CDU MSG*

FUNCTIONS AND SUBROUTINES

FILL OUT GET BYTE GET LONG





-53-

Section 6.0 CDU FLIGHT PLAN OPERATIONS

The most common use of the CDU is the creation and
modification of the aircraft flight plan. Over I00
procedures are dedicated to transforming the pilots
flight plan entries to a database used for aircraft
guidance and cockpit displays. The flight crew may
examine details of the flight plan on both the CDU and
the navigation display. The flight plan database is
used by automatic guidance to produce aircraft control
signals and by the primary flight display to drive
guidance cues used in manual flight operations.

The basic element of the flight plan is the waypoint.
A waypoint is a global position defined by its latitude
and longitude. Waypoint positions may be defined for
some real geographic location such as a VOR transmitter
or may be a convenient location such as the start of the

final approach leg to a runway. The following are the

different types of waypoints used in the ATOPS CDU

system.

GRP - Ground reference point.

NAVAID - Navigational aid transmitter; VOR, DME, TACAN.

AIRFIELDS - Airfield tower position.

PILOT WAYPOINT - Dynamically generated waypoint. Can

be created as a bearing and distance from a fixed

reference (including the airplane) or an absolute

latitude/longitude value.

Predefined groups of waypoints are referred to as route

functions. The waypoints in a route function are defined

in a sequence which is used to form a connected path

segment. Not all waypoints defined for a route function

must be included into the flight plan. Particular entry

and exit waypoints may be chosen to bound the set of

waypoints actually used in the plan. The different types

of route functions used in the CDU are as follows.

SID - Standard Instrument Departure for airports.

AIRWAY - Both Victor and Jet airways which are bi-

directional routes defined for major air traffic.

STAR - Standard Terminal Arrival Routes to airports.

APPROACH - Approach path to a particular airfield's

runway.

HOLD - Holding pattern consisting of four pilot

waypoints.

E,M]E 5"..:,_ IN;tN[tLIBALLY BLAIIK PI_"CEDtNG PAGE BLANK NOT FILMED



-54-

The flight plan is made up of waypoints, route functions,

and route dicontinuities which are collectively referred to

as route elements. Route discontinuities are gaps in the

flight plan which seperate path segments. They require a

position in the route and waypoint buffers as do the

previously mentioned elements, however the various data

fields in the buffer are zeroed.

The desired route elements are manually entered into the

flight plan by use of the various clearance pages of the

CDU, shown below.



-55-

ROUTE - Enter origin/destination airfields and route
elements into the flight plan.

LEGS - Enter individual waypoints and their constraints
into the flight plan.

DIRECT/INTERCEPT - Designate a destination waypoint to
be reached by a "Direct To" segment or a fixed bearing
intercept.

LEG TIME - Specify an arrival time at a particular
waypoint.

ROUTE INDEX - Request airway intercept.
HOLD - Define holding pattern.
DEPARTURE/ARRIVAL- select airfield departure and

arrival routes.

Any particular waypoint on the path may have up to four
constraints applied to it. These are altitude, speed,
arrival time, and turn radius. The waypoint positions and
their constraints are the parameters which are used in the
creation of the waypoint guidance buffer used by flight
management and display procedures.





-57-

Section 6.1 THE FLIGHT PLAN DATABASE

There are eight data buffers used to save flight plan
information. The following sections describe the form
and usage of the data stored. Each buffer is part of
the set of commons defined as system global sections.

pRE:CEDtt_)G PAGe: BtANK NOT F!Lf_#.ED





-59-

Section 6.1.1 THE NAVIGATION DATABASE (AADCOM)

AADCOM is a read-only global common containing all

pre-defined aircraft navigation data. A pointer block

is placed at the begining of the common to direct search
routines to the various data areas within the common.

The format of the pointer block is as follows.

OFFSET LABEL

0 IBPTR

4 BULK ID

20 JETPTR

24 VICPTR

28 RTEPTR

32 RESPTR

36 ADZPTR

40 CDZPTR

POINTER TO

longitudinal strip data

database ID text

jet airways

victor airways

standard route airways

restricted areas

air defense zones

coastal defense zones

The longitudinal strip data consists of airfields, GRPs,

NAVAIDs, and obstruction points existing within two degree

increments of longitude. A strip is made up of a longitude

boundary pair followed by four address pointers to the

previously mentioned strip data items. The format of the

various strip items is shown below. Note that a zero

terminater word is used to denote the end of any block of

navigation data.

AIRFIELDS:

OFFSET TYPE

0 CHAR*4

4 CHAR*I

5

6 REAL*4

10 REAL*4

14 INT*4

18 REAL*4

22 REAL*4

26 REAL*4

30 REAL*4

34 INT*4

36 INT*2

38 INT*2

40 INT*2

42 INT*2

44 INT*4

48 INT*4

52 INT*4

56 INT*4

60 n'48

DATA

airfield name

" " (always blank)

not used

control tower latitude (deg)

control tower longitude (deg)

pointer to next strip airfield

main runway length (ft)

main runway true heading (deg)

local magnetic variation (deg)

elevation

terminal data block pointer (not used)

tower frequency (2X5 code)

clearance frequency (2X5 code)

ground control frequency (2X5 code)

ATIS frequency (2X5 code)

pointer to list of SIDs

pointer to list of STARs

pointer to list of APPROACHs

airfield ID pointer

runway data blocks

PAI_ "_ .INTENTIONALLY BLANK

PRECEDING PA(_, BLANK NOT .';'tMED



-60-

AIRFIELDS - STANDARD INSTRUMENT DEPARTURE (SID) &

STANDARD TERMINAL ARRIVAL ROUTE (STAR):

OFFSET TYPE

0 CHAR*6

6 INT*4

I0 INT*4

14 INT*4

18 REAL*4

22 REAL*4

26 REAL*4

30 REAL*4

(N-I) "20+14

DATA

SID name

next item pointer (used for last wpt access)

SID ID pointer

first waypoint pointer

first waypoint assigned altitude (ft)

first waypoint assigned speed (kt)

first waypoint assigned radius (ft)

first waypoint DME arc bearing (deg)

Nth waypoint pointer

(N-I)'20+34 zero terminater

AIRFIELDS - APPROACHES:

These are identical to SID/STAR data format except for the

insertion of a runway pointer at offset ten which increases

all offsets above ten by four bytes.

AIRFIELDS - RUNWAYS:

OFFSET TYPE

0 CHAR*3

3 BYTE

4 REAL*4

8 REAL*4

12 INT*4

16 REAL*4

20 REAL*4

24 REAL*4

28 REAL*4

32 REAL*4

36 REAL*4

40 INT*4

44 INT*4

DATA

runway name

not used

threshold latitude (deg)

threshold longitude (deg)

outter marker pointer

MLS/ILS latitude (deg)

MLS/ILS longitude deg)

runway length (ft)

runway true heading (deg)

runway elevation (ft)

glide slope angle (deg)

ILS frequency (2X5 code)

missed approach path pointer (not used)

GROUND REFERENCE POINTS

OFFSET TYPE

0 CHAR*5

5 BYTE

6 REAL*4

i0 REAL*4

14 INT*4

(GRPs) :

DATA

GRP name

compulsory report flag

GRP latitude (deg)

GRP longitude (deg)

navaid pointer



-61-

NAVIGATIONAL AIDS
OFFSET TYPE

0 CHAR*3
3 BYTE

4 INT*4
6 REAL*4

10 REAL*4
14 REAL*4
18 REAL*4
22 INT*4

(NAVAID):
DATA
navaid name
bit set 0:compulsory l:vortac
2:non-directional 3:high alt 7:always
frequency (2X5 code)
navaid latitude (deg)
navaid longitude (deg)
local magnetic variation (deg)
altitude (ft)
navaid ID pointer

OBSTRUCTIONS:
OFFSET TYPE DATA

0 BYTE bit 7 set: obstruction,
1 CHAR*5 obstruction altitude
6 REAL*4 obstruction latitude

i0 REAL*4 obstruction longitude

AIRWAYS:
OFFSET TYPE DATA

0 CHAR*6 airway name
6 INT*4 pointer to next airway

I0 INT*4 waypoint #I pointer

else mountain

4*(N-I)+10
4* (N-I)+14

COMPANYROUTES:
OFFSET TYPE

0 CHAR*
6 INT*4

I0 INT*4
14 INT*4
18 INT*4
22 INT*4
26 INT*4

waypoint #N pointer
zero terminator

DATA
route name
pointer to next route
origin airfield pointer
destination airfield pointer
SID pointer
STAR pointer
waypoint #I pointer

4* (N-I)+26
4* (N-I)+30

waypoint #N pointer
zero terminator



-62-

BOUNDARIES:
OFFSET TYPE

0 INT*2
2 CHAR*6
8 REAL*4

12 REAL*4

DATA
not used
boundary #i name
bound #i, point #i latitude
bound #I, point #i longitude

8"(N-I)+8 bound #I, point #N latitude
8"(N-I)+12 bound #I, point #N longitude
8.(N-I)+16 zero terminater

(boundary #2-N; terminated with zero word)

TEXT ID BLOCK:
OFFSET TYPE DATA

0 BYTE ID character count
1 CHAR*N ID text



- 63

Section 6.1.2 WAYPOINTCONSTRAINTS (CONBUF)

The constraint buffer holds altitude, speed, and
turn radius values specified for flight plan waypoints.
The connection between the route and the various
constraint buffer packets is the ".CPTR" node of the

route buffer structures (see Section 1.5.1.5). When

the route buffer element is a route function ".CPTR"

will be an index of a linked list of constraint packets

in the buffer. Note that waypoint constraints from the

system database and cruise altitude assignments do not

appear in the constraint buffer. The structure of the

constraint buffers is as follows.

INTEGER*4 CONBUF(4, 50) ! 50 PACKETS OF 4 LONG WORDS EACH.

CONBUF(I,I) 0-15: RTE OFFSET TO WAYPOINT (0 FOR NON-RTE WPT)
16-18: ALT/SPD/RAD DEFINED FLAG

19-22: UNUSED

23: ACTIVE CONSTRAINT FLAG

24-31: INDEX TO NEXT RTE CONSTRAINT (0 - NO MORE)
CONBUF(2,I) 0-31: ALTITUDE CONSTRAINT VALUE

CONBUF(3, I) 0-31: SPEED CONSTRAINT VALUE

CONBUF(4,I) 0-31: RADIUS CONSTRAINT VALUE





-65-

Section 6.1.3 HOLDING PATTERNDATA (HLDBUF)

The common block "HOLD" is a section of memory reserved
for holding pattern data created by hold page modules. The
memory allocation is defined in the file HLDBUF.MAR. This
file contains definitions for a four waypoint airway and
four GRPs used as hold waypoints. The format of these
blocks is the same as those used in AADCOM(see section
1.5.1.1). The difference between the AADCOMand HLDBUF
structures is that AADCOMis predefined read-only memory and
HLDBUF is a template filled in holding pattern procedures.

p_"4'EC_r',)G PAE_t. BL,a,N.w.N(-,i ._:*LM_-"T2,

Ck)U\ INT[NTIONALLY BLAN_





-67-

Section 6.1.4 PILOT DEFINED WAYPOINTS (PPT WPT)

The pilot defined waypoint buffer is used to save

information for waypoints created through calls to

the function MAKE WPT. Pilot waypoints are made for

runway selection, aircraft position reference, bearing/

range from reference point, and absolute position

selection. The Fortran allocation is shown below.

STRUCTURE /PPTS/

CHARACTER*5 NAME

BYTE BITS

REAL LAT, LON, ALT, SPD

CHARACTER*f6 TEXT

END STRUCTURE

RECORD /PPTS/ PPT WPT(20)

The ".BITS" node of the structure is set to indicate

when altitude and speed have been supplied for the pilot

waypoint. Bit #0 is set for altitude definition and bit

#i is set for speed definition. The ".TEXT" node is set

to the CDU command string entered by the pilot which

caused the pilot waypoint creation. This text may be

viewed on the NAV DATA page of the CDU.





-69-

Section 6.1.5 THE ROUTEBUFFERS (RTE MOD/RTEACT)

The route buffers are in the global common area CDUCOM.
There is one for the active flight plan and one for the
modified plan. Each has room for 30 route elements. The
structure definition is shown below.

STRUCTURE/RTE/
INTEGER*4 ADDR

BYTE TYPE, CPTR

UNION

MAP

INTEGER* 2 RWY

END MAP

MAP

INTEGER* 2 EXIT

END MAP

END UNION

END STRUCTURE

RECORD /RTE/ RTE MOD(30), RTE ACT (30)

The nodes of the structure are described in the following

list. Note that ".RWY" and ".EXIT" are duplicate references

to the same memory location. This is because both nodes are
not used for the same route element.

.ADDR

.TYPE

.CPTR

.RWY

.EXIT

Memory address of the route element. May point to
a location in AADCOM, HLDBUF, or PPT WPT.

Route element type as follows.

DISCONTINUITY = 0, AIRFIELD = i, GRP = 2,

NAVAID = 3, PILOT WPT = 4, HOLD PATTERN = 5,

APPROACH = 6, SID = 7, STAR = 8, AIRWAY = 9
Constraint buffer index.

Runway waypoint, l:origin 2:destination

Route function offset to exit waypoint address.

PRECEDING PAGE BLANK NOT FILMED





-71-

Section 6.1.6 THE WAYPOINT BUFFERS (WPT MOD/WPT ACT)

The waypoint buffers contain the actual waypoint data

which defines the entire flight plan. WPT ACT is used for

the active flight plan while WPT MOD has the path which

is under modification. WPT MOD is re-created each time

a flight plan change is entered on the CDU. The waypoint

buffer is actually an expansion of the data already exist-

ing in the route buffer• Each route element is replaced

by one or more waypoints having any constraints defined

by CONBUF (see section 1.5.1.2), the cruise altitude, or

AADCOM predefinition. A number of waypoint buffer

parameters are computed from the geometry of the waypoints

taken from the expansion process. This "Path Definition"

phase, performed by the procedure PATHDF, starts when the

expansion process is complete. The structure template of

the waypoint buffers is shown below followed by a

description of each of the parameters.

STRUCTURE /WPTS/

CHARACTER*5 NAME

BYTE DMA, SOURCE, PHASE, ALTF, SPDF, RADF, FILL

INTEGER*4 RNAV, ETA

REAL LAT, LON, ALT, GS, TIME, CCD

REAL ARC2, DTT, RAD, BRNG, ANGLE, ERAD, PPD

REAL WPV(3), TCV(3), NMV(3)

REAL IAS, TCLAT, TCLON, WSPD, WDIR, MGVR, TDEV, FPA
END STRUCTURE

RECORD /WPTS/ WPT ACT(30), WPT MOD(30)

•NAME

.DMA

•SOURCE

.PHASE

.ALTF

.SPDF

.RADF

.FILL

.RNAV

.ETA

.LAT

.LON

.ALT

.GS

.TIME

.CCD

Waypoint name.

I:DMA turn start, 2:DMA turn stop, else 0.

Index into route buffer indicating the element

the waypoint was expanded from.

Phase of flight; l:climb 2:cruise 3:descent

0:undefined

Altitude defined flag; 0:undefined l:explicit

definition (AADCOM, PPT WPT, CONBUF), 2:implicit

defintion (cruise alt,TPOS ' updatable wpt). If

equal 2, shown in small font on LEGS page.

Speed definition flag; see .ALTF

Radius definition flag; 0:computed l:assigned

Keeps remaining nodes on long word boundary.

Radio navigation aid address pointer.

Estimated time of arrival (seconds past midnight)•

Waypoint latitude (deg).

Waypoint longitude (deg).

Waypoint altitude (ft).

Waypoint ground speed (kt).

Leg time from last waypoint (seconds)•

Turn center to turn center distance (ft).

PRECE[:),I[iG PAGE BI.A_K NO'I" FI,LMIED



-72-

.ARC2

.DTT

.[tAD
•BRNG
•ANGLE
•ERAD
.PPD
.WPV
• TCV
•NMV

.IAS

.TCLAT

.TCLON

.WSPD

.WDIR

.MGVR

.TDEV

.FPA

One half turn arc length (ft).
Distance from waypoint to turn tangent point (ft).
Turn radius (ft).
Inbound leg bearing or DMEwaypoint bearing (deg).
Turn angle (deg; -:left +:right)
Local earth radius value (ft).
Point to point distance from last waypoint (ft).
Earth center to waypoint unit vector.
Earth center to turn center unit vector•
Normal unit vector. Perpendicular to plane formed

by earth center, previous, and current waypoints.

Waypoint airspeed (not used)•

Turn center latitude (deg).

Turn center longitude (deg).

Local wind speed (not used).

Local wind direction (not used)•

Local magnetic variation (deg).

Local temperature deviation (not used).

Leg flight path angle from last waypoint.

A subset of the waypoint buffers is copied into other

waypoint buffers for transmission to the Display VAX.

This is done to save time since I/O time for 30 copies

of waypoint data is significant. The copying of the data

is performed in the background also to utilize available

"fast loop" processing time. The structure of the display

waypoint buffer is shown below. All the nodes match the

structure described above except for ".CODES". The .DMA,

.ALTF, and .SPDF data mentioned above are packed into one

byte in the display waypoint buffers• Bits 0 & 1 are used

for the DMA index and bits 2 & 3 are used for the altitude

and speed booleans respectively.

STRUCTURE /DWPTS/

INTEGER*4 ETA

REAL LAT, LON, ALT, GS, TIME, CCD, ARC2, DTT, RAD, BRNG

REAL ANGLE, ERAD, PPD, WPV(3)

CHARACTER*5 NAME

BYTE CODES

END STRUCTURE

RECORD /DWPTS/ MOD WPTS(30), ACT WPTS(30)



-73-

Section 6.2 FLIGHT PLAN DATA PROCESSING

This section covers the internal operations performed
on the flight plan data buffers. The 23 modules described
here are contained in four files named EXECUTE.FOR,
XLAT RTE.FOR, PATHDF.FOR, CONST.FOR. These modules use
the constraint buffer, navigation database, holding pattern
data, pilot waypoint buffer, and the route buffer to create
a provisional waypoint buffer which, upon pilot acceptance,
becomes the active waypoint buffer.

The various clearance pages of the CDU have three modes
of operation; original clearance, modified clearance, and
active clearance. The current mode is shown with the first
three characters of the title line of clearance pages as
follows.

" " - orignal clearance
"MOD" - modified clearance
"ACT" - active clearance

The original clearance mode is active by default upon
starting the system or when the origin airfield is entered
on the ROUTEpage of the CDU. At this time RTE MODhas
the provisional flight plan and RTE ACT is undefined. Once
the original clearance is EXECuted by the pilot the mode
becomes ACT. At this time RTE MODand RTE ACT both contain
the active flight plan. When changes are made to the active
plan the CDU mode becomes MOD. RTE ACT will contain the
active flight plan being used by guTdance, however the CDU
shows the modified flight plan stored in RTE MOD.

Creation of a new "MOD" waypoint buffer is started when
a CDU page handler receives a flight plan input and calls
the procedure DEMODE. Acceptance of the new flight plan
can be automatic, depending on DEMODEparameters, or may
require pilot interaction. The pilot may however choose to
reject the modified route and return to the last active plan.
These operations are performed by the modules EXECUTEand
REJECT.





-75-

Section 6.2.1 CONSTRAINTBUFFER USAGE

The constraint buffer is used to store altitude, speed,

and turn radius constraints for route waypoints. The

constraints are entered manually on the CDU through the

LEGS page. The format of this buffer is described in

section 1.5.1.2. Seven procedures perform various oper-

ations on the constraint buffer. Module descriptions of

each are provided on the following pages.



-76-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

CLEAN CON
CONST.FOR
SLOW
EXECUTE, REJECT
CALL CLEAN CON

PURPOSE:
TO identify unused packets of the constraint buffer.

DESCRIPTION:
This module performs clean-up on the CDU constraint

buffer. When a flight plan is executed or changes to the

active flight plan have been rejected, both the "ACT" and
"MOD" route buffers are identical. At this time "CLEAN CON"

is called to identify which of the 50 constraint buffer--

packets of data are actually used. All others are marked as

free for future use while the used packets are flagged as

active constraints.

A 50 byte array of booleans (USED) is initialized as false

(not used). Each ".CPTR" pointer is followed into the linked

list of constraints. As each constraint is found the "active

constraint" bit is set and the corresponding USED byte is set

true. When finished, the first long word of each constraint

packet not denoted as used is cleared to designate it as

available.

GLOBAL REFERENCES:

ARRAYS

CONBUF* CONBYT RTE CNT

RECORD ARRAYS

RTE MOD

FUNCTIONS AND SUBROUTINES

CLRBUF



-77-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

COPY CON
CONS_.FOR
SLOW
KILL CON, NEWCON
NEWYNDEX= COPYCON(OLD INDEX)

PURPOSE:
To copy a constraint list to other free constraint

buffer locations.

DESCRIPTION:
This function is called to copy a constraint list starting

at the packet indicated by the OLD INDEX input parameter.
The data is copied to free packets in the constraint buffer
and the index of the new list is returned as the function
value.

The linked list pointers are followed and for each
old constraint packet a call to FIND_EMPTY is made to get an
available block. The old data is copied to the new locations
and the "active constraint" bit of the new data is cleared.

GLOBAL REFERENCES:

ARRAYS
CONBUFCONBYT

FUNCTIONS AND SUBROUTINES
FIND EMPTY LIB$MOVC3



-78-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

FIND EMPTY
CONST.FOR
SLOW
COPY CON, HLD POS, NEWCON
INDEX = FIND EMPTY()

PURPOSE:
TO locate an available constraint packet.

DESCRIPTION:
This function returns the index of the first free packet

in the constraint buffer. The first long word of each
packet is examined until an available set is found (equal 0).
If all 50 constraints are used the CDU error code is set to
#4 and a return to the caller's caller is performed.

GLOBAL REFERENCES:

VARIABLES
ERCODE*

ARRAYS
CONBUF

FUNCTIONSAND SUBROUTINES
RET



-79-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

GET CON
CONST.FOR
SLOW
RTE, XLAT RTE
GET_CON(RTE_PTR,OFFSET, WPT_PTR)

PURPOSE:
TO store constraints into waypoint buffer locations.

DESCRIPTION:

This procedure is called with an index into the route

buffer (RTE PTR) of the route element containing a par-

ticular waypoint. If the route element is a route function

then the database offset is also supplied. Any constraint

data existing for the waypoint is fetched and copied to the

waypoint buffer for the waypoint designated by the parameter

list index WPT PTR. The waypoint buffer flags .ALTF, .SPDF,

and .RADF are set appropriately.

Note that when the route element is a route function, the

constraint buffer contains a linked list which must be

followed until a matching offset value is found or the end

of the list is encountered.

GLOBAL REFERENCES:

ARRAYS

CONBUF CONBYT CONWRD

RECORD ARRAYS

RTE MOD WPT MOD*



-80-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

KILL CON
CONST.FOR
SLOW
NMBRS
CALL KILL_CON(WPT_PTR, CODE)

PURPOSE:
TO remove one or more constraints from a waypoint.

DESCRIPTION:
This procedure is called to remove one or more con-

straints associated with a particular waypoint buffer
waypoint. If the constraint packet is designated as an
active set, a copy of the packet is made and the route
buffer element is redirected to the new copy. The
assignment bits (16-18 of first long word) of the constaint
packet are cleared as indicated by the CODE input parameter.
If the constraint packet becomes null it is removed from

the linked list or the route buffer pointer (CPTR) is

cleared if it were the only constraint packet.

GLOBAL REFERENCES:

ARRAYS

CONBUF CONBYT* CONWRD

RECORD ARRAYS

RTE MOD* WPT MOD

FUNCTIONS AND SUBROUTINES

COPY CON RTE WPT WPT ADDR
__ m --



-81-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

NEW CON

CONST.FOR

SLOW

NMBRS, XFER CON

variable (see below)

PURPOSE:

To insert waypoint constraints into the constraint buffer.

DESCRIPTION:

This module is called to add a constraint to a waypoint

on the flight plan. The waypoint may have other constraints

already defined. Two calling sequences exist for this

module, as shown below. The module P LIST is used to determine

which calling sequence was used.

CALL NEW CON(WPT_PTR, V TYPE, VALUE)

CALL NEW_CON(,V TYPE, VALUE, RTE_PTR, RTE_OFF)

WPT PTR

V TYPE

VALUE

RTE PTR

RTE OFF

Index into waypoint buffer of selected waypoint.

Type of constraint: l=altitude 2=speed 3=radius

Constraint value.

Rte buffer index of rte element owning selected wpt.

Offset into rte function for rte type waypoint.

The constraint pointer of the route element corresponding

to the selected waypoint is fetched. It is used to determine

if a constraint packet already exists for the waypoint. If
saved constraints for the route element have the "active" bit

set, a duplicate copy is made so modifications may be made.

When the pointer points to a linked list, the links must be

followed to determine the existence of data for a particular

waypoint. When constraint data already exists, the fields of

the packet are simply updated. Otherwise a new packet is

created. When the waypoint is part of a route function

which has other waypoint constraints, the new packet is

inserted into the linked list chain.

GLOBAL REFERENCES:

ARRAYS

CONBUF* CONBYT* CONWRD*

RECORD ARRAYS

RTE MOD* WPT MOD

FUNCTIONS AND SUBROUTINES

COPY CON FIND EMPTY P LIST RTE WPT WPT ADDR



-82-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

XFER CON
CONST.FOR
SLOW
MERGE, NEWENTRY
CALL XFER_CON(FROM,OFFSET, TO)

PURPOSE:
TO transfer constraint data.

DESCRIPTION:
This procedure is called to transfer existing waypoint

constraints to another waypoint. Both waypoints must be part
of a route function which is indicated by the route buffer
pointer FROM/TO and the route function offset, OFFSET.
This procedure is used by routines which split a single route
function into a repeated pair of route functions with different
entry/exit points.

GLOBAL REFERENCES:

ARRAYS
CONBUFCONBYTCONWRD

RECORDARRAYS
RTE MOD

FUNCTIONS AND SUBROUTINES
NEWCON



-83-

Section 6.2.2 ROUTETRANSLATIONAND PATH DEFINITION

The modified route buffer (RTE MOD) and other basic
flight plan database elements are combined to form the
provisional waypoint buffer (WPT MOD). The procedures on
the file XLAT RTE.FOR perform this task. Once the route
buffer has been translated into a basic waypoint buffer, the
path definition procedures contained in the file PATHDF.FOR
are called to create the mathematical constructs associated
with using the waypoint buffer as a guidance buffer. The
translation and definition process is started by a call to
the procedure DEMODEany time a flight plan modification is
made on the CDU. The following pages contain the module
descriptions for these routines.



-84-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

CREATEBUF
EXECUTE.FOR
SLOW
DEMODE,EXECUTE
CALL CREATE_BUF(COUNT,WPT_BUF, DSP_BUF)

PURPOSE:
To move selected portions of the waypoint buffer to the

display waypoint buffer.

DESCRIPTION:
This procedure is called with a waypoint count and one

of the waypoint buffers as inputs. It stores portions of
the waypoint buffer into one of the display waypoint
buffers as the sole output parameter.

For each waypoint sixty-eight consecutive bytes of data

starting at the .ETA parameter are moved to the display

buffer. Then the .DMA, .ALTF, and .SPDF data is packed into

the .CODES bytes of the display buffer.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES

LIB$MOVC3



-85-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:

CALLING SEQUENCE:

DEMODE
EXECUTE.FOR
SLOW
FLT TYPE INP, HLD_POS, HOLD INPUT,
INTC WPTS, LINK CMD, MODROUTE, NEWCRZ,
ROUTE, TIME IN,--UPDATE POS, WPT DATA
CALL DEMODE(MODEFLAG)

PURPOSE:
TO initiate the creation of a new waypoint buffer.

DESCRIPTION:
This procedure is called when a change is made to the

flight plan. If the change is made to the active plan
the CDU demodes to the provisional plan status indicated
by the text "MOD" on the header of clearance pages. DEMODE
initiates the translation of the route buffer to a complete
waypoint buffer. There are three modes of operation for
this module; Auto execute, No execute, and No trim. The
normal sequence occurs for the No execute mode. The active
plan waypoints already over-flown are trimmed away and the
route translation occurs always leaving the CDU in the MOD
plan mode. The No Trim mode is the same as No execute but
the removal of passed waypoints is not performed. If the
changes made to the flight plan do not require final
approval from the pilot through EXEC selection, the Auto
execute mode is used.

The first test in DEMODEdetermines if the current CDU
mode is "Active". If it is, DEMODEwill enable auto execute
if requested, and perform the waypoint trimming by calling
TRIM WPTS. The current destination waypoint pointer PTR2D
is saved to be used later when the pilot executes the
modified plan. Next consecutive route discontinuities are
removed from the route buffer and the route buffer to
waypoint buffer translation is performed through calls to
DSC CHECK and XLAT RTE respectively. Once the waypoint
buffer is created Tt is either made active, if Auto execute
is enabled, or several tests are made on the new buffer.
If the modified waypoint buffer WPTMOD starts with at least
two waypoints before any route discontinuity markers the
EXEC light flag is set. Also if the buffer contains any
route discontinuity markers the DSPLY light flag is set.

The final steps of the waypoint buffer creation process
are to create the display waypoint buffer subset and expand
the provisional route to data-link text description if
expansion is enabled. The display buffer is created by
calling CREATEBUF and the transmission to displays is
activated by clearing GDTIME.



-86-

GLOBAL REFERENCES:

VARIABLES
CDU CMD GDTIME* LT DSPY* LT EXEC* MODCNTPMODE*PTR2D
SAVPTR*

ARRAYS
RTE CNT

RECORDARRAYS
MODWPTS RTE MODWPT MOD

FUNCTIONS AND SUBROUTINES
CREATE BUF DSC CHECKEXECUTEEXPAND_RTETRIM_WPTSXLAT_RTE

C



-87-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

DSC WPT

XLAT RTE.FOR

SLOW

XLAT_RTE, RTE

CALL DSC_WPT(WPT_INDEX, RTE_INDEX)

PURPOSE:

TO insert a route discontinuity into the waypoint buffer.

DESCRIPTION:

This subroutine is called to insert a discontinuity

marker into the flight plan. One is inserted only if the

previous waypoint entry was not also a discontinuity marker

and there is room in the waypoint buffer. The discontinuity

is associted with the route buffer via the source index "I"

GLOBAL REFERENCES:

RECORD ARRAYS

WPT MOD*



-88-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

FIND CCD
PATHDF.FOR
SLOW
PATH
CCD = FIND CCD(TO ADJUST)

PURPOSE:

TO compute the CCD parameter in the waypoint buffer.

DESCRIPTION:

The turn center to turn center distance (CCD) differs

from the waypoint to waypoint distance for "Pass By"

waypoints. The adjusment at each end of the leg is

the tangent distance minus half the turn arc length

(DTT-ARC2). The "From Waypoint" adjustment is computed

in this procedure and the "To Waypoint" adjustment is

passed as a parameter to avoid DMA arc entry waypoint

testing.
Checks are made to assure that the leg being processed

has proper geometry at both ends. When the sum of the

tangent distance becomes larger than the point to point

distance a "Bad Radius" situation has occured. This

means a "Pass By" turn is to large for the given leg

length. The offending turn radius is set to zero and

the path definition waypoint index is reset to force

the calling module to recompute parameters using the

new turn radius.

GLOBAL REFERENCES:

VARIABLES

ERCODE*

RECORD ARRAYS

WPT MOD



-89-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

PURPOSE:

LOCAL ERAD
PATHDF.FOR
SLOW
PATH, NEWPOS, POINTS
COMMON/PTHCOM/ LAT_FEET, LON FEET, RAD

CALL LOCAL_ERAD(ALT, SIN_LAT,--COS_LAT)

To compute local earth radius values.

DESCRIPTION:

This procedure uses the input parameter for waypoint

altitude, and sine/cosine of latitude to compute local

earth radius values. The computed values, returned through

common PTHCOM, are the earth radius to waypoint and the

number of feet per degree of both latitude and longitude.

GLOBAL REFERENCES:

VARIABLES

LAT FEET* LON FEET* RAD*



-90-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

PATH
PATHDF.FOR
SLOW
PATHDF
CALL PATH(START_INDEX, END_INDEX)

PURPOSE:
TO compute flight plan parameters required by guidance

and display software.

DESCRIPTION:
This procedure computes many of the guidance buffer

parameters associated with the aircraft flight plan, which
are contained in the structure "WPT MOD". Several of the
structure nodes are filled by "XLAT RTE" before calling this
subroutine. The following list shows which parameters of
"WPT MOD" are computed. Some values are not computed for all
waypoints, therefore these exceptions are noted.

WPT MOD(I) " .XXX"
LAT
LON
PPD
DTT
ARC2
ANGLE
CCD

BRG

TCLAT

TCLON

FPA

TIME

ERAD

WPV

NMV

TCV

waypoint latitude

waypoint longitude

point to point distance

distance to tangent

one half arc length

turn angle

center to center distance

bearing
turn center latitude

turn center longitude

flight path angle

delta time

local earth radius

waypoint vector

unit normal vector

turn center vector

INBOUND DMA WPTS ONLY

INBOUND DMA WPTS ONLY

ALL WPTS

ALL WPTS

ALL WPTS

ALL WPTS

ALL WPTS

ALL EXCEPT OUTBOUND DMA

ALL EXCEPT INBOUND DMA

ALL EXCEPT INBOUND DMA

ALL WPTS

ALL WPTS

ALL WPTS

ALL WPTS

ALL WPTS

ALL WPTS

PATHDF computes the guidance parameters in two passes

through the waypoint buffer. The exact mathematical

concepts invloved with the various parameters are dis-

cussed in Appendix A.

During the first pass the waypoint vectors (WPV), normal

vectors (NMV), point to point distances (PPD), and local

earth radius (ERAD) values are computed for each waypoint.

WPV and ERAD are computed by calls to XYZ and LOCAL ERAD

respectively. NMV is the cross product of the current and

previous waypoints WPV vectors. These WPV values are also
used in combination with the ERAD value to compute PPD using

the arc length formula Arc_length = Radius * Angle_radians.

DMA waypoint repositioning occurs also during the first pass.



-91-

When PATHDF encounters a DMAentry waypoint, new latitude and
longitude values are computed from the turn center

previously stored as LAT/LON. The old LAT/LON values are

moved to the turn center locations (TCLAT/TCLON). The new

LAT/LON values are found from the turn center position,

bearing from turn center to new position, and the turn

radius which are all fetched from AADCOM and stored by

XLAT RTE prior to calling PATHDF.

The remaining guidance parameters are computed during the

second pass through the waypoint buffer. None of the

parameters for the second pass are computed for the first

waypoint. Several are not assigned for the last waypoint

(ANGLE, ARC2, DTT, TCV, TCLAT, TCLON). There are three

guidance buffer parameters that are handled identically

for all types of waypoints. These are RAD, FPA, and TIME.

For a DMA entry waypoint only the CCD value is computed.

The TCV, CCD, and previous waypoints ARC2 parameters are

computed when the waypoint is a DMA arc exit waypoint. For

standard waypoints the BRNG, CCD, ANGLE, ARC2, DTT, TCV,
TCLAT, and TCLON values are set.

When starting and ending tangent distances (DTT) for a

leg are large enough to overlap, a "Bad Radius" turn exists.

The module FIND_CCD makes a zero radius turn at the offending

waypoint and signals PATHDF to recompute guidance parameters

for the new turn radius. The waypoint with the redefined

turn radius appears on the LEGS page of the CDU with an
asterisk.

GLOBAL REFERENCES:

VARIABLES

COS LAT LAT FEET LON FEET RAD SIN LAT

RECORD ARRAYS

WPT MOD*

FUNCTIONS AND SUBROUTINES

FIND CCD GRID LOCAL ERAD MTH$ASIN MTH$ASIND MTH$ATAN2
MTH$ATAND2 SCOSD UVC VCP VDP VMG XYZ



-92-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

PATHDF
PATHDF.FOR
SLOW
XLAT RTE
CALL PATHDF

PURPOSE:
TO initiate path definition computations.

DESCRIPTION:
This subroutine is the main driver of the path definition

process. Calls to "PATH" are made after delimiting groups of
consecutive waypoints in the provisional waypoint structure
"WPT MOD". Usually one call to "PATH" is made for the
entire set of waypoints, however multiple calls are made
when route discontinuities exist in the flight plan. The
effect of this is to make several disjoint path segments in
one waypoint buffer.

GLOBAL REFERENCES:

VARIABLES
MODCNT

RECORDARRAYS
WPT MOD

FUNCTIONS AND SUBROUTINES
PATH



-93-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

RTA TIMES
XLAT RTE.FOR
SLOW
XLAT RTE
CALL RTA TIMES

PURPOSE:
TO set arrival times in the waypoint buffer.

DESCRIPTION:
The Requested Time of Arrival (RTA) waypoint is located

in the waypoint buffer. When the waypoint no longer
exists the RTA parameters are reset. Otherwise the selected
RTA time is assigned to the RTA waypoint and the remaining
waypoint times are set according to the stored leg time
values.

GLOBAL REFERENCES:

VARIABLES
MODCNTRTA INDX* RTA TM RTA WPT*

RECORDARRAYS
WPT MOD*



-94-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

RTE
XLAT RTE.FOR
SLOW
XLAT RTE
CALL--RTE(RTE__INDEX, WPT__INDEX)

PURPOSE:

To store route waypoints in the waypoint buffer.

DESCRIPTION:

This subroutine is called by "XLAT RTE" when a route

function is encountered while translating the route buffer.

All the waypoints for a complete route function (both entry

and exit waypoints defined) are placed in the WPT buffer

through calls to "WPT", except for the entry waypoint.

Since the route buffer defines the entry WPT as a separate

route buffer element the entry waypoint will already be placed

in the waypoint buffer when the route function is being

processed. The only thing "RTE" does for the entry waypoint

is the search of the constraint buffer mentioned below.

When the route function is not an airway, the speed,

altitude, and DMA turn information is fetched from the

navigation database (AADCOM). The last processing of each

waypoint consists of calling GET CON to extract constraint

data. Note that previously stored AADCOM values will be

overwritten if higher priority constraint buffer values

exist.

When a route function's entry waypoint has not been

defined a discontinuity will already exist in the waypoint

buffer. In this case the exit waypoint only is saved

following the discontinuity. For the reverse situation a

discontinuity is stored after the existing entry waypoint

for the missing exit waypoint. When niether is defined one

discontinuity is placed in the waypoint buffer for the

entire route function.

A distinction is made between airways and other route

functions (SID STAR APPROACH HOLD). Each airway waypoint

is assigned a "cruise" phase of flight and the current

cruise altitude, which may be overridden later during the

constraint buffer fetches. For non-airway route functions,

SIDs are assigned the "climb" phase of flight while others

are set to "descent". The altitude, speed, and turn

radius is fetched from the navigation database (AADCOM)

or the hold buffer (HLDBUF). The turn radius may contain

a zero which is a cue to the path definition routine to

compute the value. The fetched altitude is also used as

a flag. When negative, the current waypoint is a DMA turn

entry waypoint and the following waypoint is a DMA turn

exit waypoint. The DMA bearing and turn angle are also

fetched from the database in these cases.



-95-

GLOBAL REFERENCES:

VARIABLES
CRZALT

RECORDARRAYS
RTE MODWPT MOD*

FUNCTIONS AND SUBROUTINES
BOUNDSDSC WPT GET CON GET LONG GET REAL TYPE WPT WPT



-96-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

TRIM WPTS
EXECUTE.FOR
SLOW
DEMODE,ADD WPT, DIRECT
CALL TRIM WPTS(NEXT_WPT_INDEX)

PURPOSE:
TO remove passed waypoints from the active flight plan.

DESCRIPTION:
This procedure is called to eliminate the beginning way-

points from the route buffer which have already been passed
on the active flight plan. When the deletion splits a
route function a new entry waypoint is created.

The input parameter NEXT WPT INDEX points to the end
waypoint in the waypoint buffer of the leg which is to
become the first leg of the route. The route buffer element

corresponding to the waypoint before the chosen waypoint is
examined to determine its type. If the route element is a

single waypoint, all the route elements up to and including

the tested one are removed from the route buffer (RTE MOD)

by calling KILL. When a route function is encountered the

procedure NEW ENTRY is used to split the route function

into the portTon that is to be saved. Then the prior

elements are removed by calling KILL.

GLOBAL REFERENCES:

RECORD ARRAYS

RTE MOD WPT MOD

FUNCTIONS AND SUBROUTINES

BOUNDS KILL NEW ENTRY RTE WPT WPT ADDR



-97-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

WPT
XLAT RTE.FOR
SLOW
XLAT RTE, RTE
CALL WPT(RTE_INDEX, WPT_INDEX, ADDR, TYPE)

PURPOSE:
TO store waypoint data into the waypoint buffer•

DESCRIPTION:
This subroutine is called to place a waypoint in the next

available position of the modified waypoint buffer (WPT MOD).
The following items are stored for each waypoint.

•NAME
•LAT
. LON
.RNAV
•MGVR
• SOURCE

5 character WPT name padded with blanks on the right.
Waypoint latitude position•
Waypoint longitude position•
database address pointer to local navaid.
Local magnetic variation value.
Index into rte buffer which associates a waypoint
with the rte buffer data that caused its creation.

If the waypoint is a pilot defined waypoint four other items
may be set.

.ALT

.ALTF

.GS

.SPDF

Altitude constraint.
Altitude definition flag.
Ground speed constraint•
Speed definition flag.

The data is fetched using the input address parameter
which is a pointer into AADCOM, HLDBUF, or PPT WPT. The
TYPE parameter determines how the data is fetched. The .LAT,
.LON, .MGVR, and •SOURCEparamters are set identically for
all types. Other parameters are set as follows.

AIRFIELD:
GRP:

NAVAID:
PILOT PT:

4 character name / no navaid pointer (0).

5 character name / navaid fetched from GRP

block in database (ADDR+I4).

3 character name / navaid reference is self.

5 character name / no navaid / alt & spd data

fetched from pilot buffer (PPT WPT). flags

set according to pilot waypoint type, POS,

PPT, or RWY.



-98-

GLOBAL REFERENCES:

VARIABLES
ERCODE*

RECORDARRAYS
WPT MOD*

FUNCTIONS AND SUBROUTINES
GET BYTE GET CHAR GET LONG GET REAL GET WORDMAGVAR



-99-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

XLAT RTE
XLAT RTE.FOR
SLOW
DEMODE,HLD POS
CALL XLAT RTE

PURPOSE:
TO translate the route buffer into a waypoint buffer.

DESCRIPTION:
This subroutine translates the route buffer "RTE MOD"

into the equivalent waypoint buffer "WPT MOD". The--route
buffer consists of waypoints, route functions, and route
discontinuity markers. The waypoint buffer contains just
waypoints and discontinuity markers. First, the entire
memory area reserved for WPT MOD is cleared to initialize
all parameters to zero. Once this is finished each item in
RTE MOD is examined to determine the appropriate action to
perform corresponding to its type. The last step is to call

PATHDF to compute flight plan parameters for each waypoint.

The conversion is done by indexing through each element

of the modified route buffer (RTE MOD). If the route

element is a route function the p_ocedure RTE is called to

store the data for each waypoint contained on the route

function. If the element is a discontinuity marker a call

to DSC_WPT is made. The last possibility is a single

waypoint element. The procedure WPT is called to store the

basic waypoint data followed by a call to GET CON to fetch

any ALT/SPD/RAD constraint data. If no altitude constraint

was found in the constraint data the cruise altitude, if

entered, is assigned to the waypoint.

Once stepping through the route buffer is finished a few

miscellaneous operations are performed. The created way-

point buffer is examined to see if takeoff and landing

runways exist. If not the respective runway addresses are

cleared (AIRPTS(2,1), AIRPTS(2,2)). The waypoint buffer

may not end in a discontinuity marker so the buffer is

checked and the discontinuity is removed if present.

Finally, the procedures PATHDF and RTA TIMES are called

to compute the remaining guidance parameters.

GLOBAL REFERENCES:

VARIABLES

CRZALT MODCNT* RTA WPT

ARRAYS

AIRPTS* RTE CNT

RECORD ARRAYS

RTE MOD WPT ACT WPT MOD

FUNCTIONS AND SUBROUTINES

CLRBUF DSC WPT GET CON PATHDF RTA TIMES RTE WPT





-i01-

Section 6.2.3 EXECUTE/REJECTTHE MODIFIED FLIGHT PLAN

When flight plan entries are complete, either for the
original clearance or a modified active plan, the pilot
must choose between executing or rejecting the provisional
flight plan. The EXEC button of the CDU will be lit when
execution is allowed. If pressed, the provisional plan
becomes the new active flight plan. At this time the MOD
buffers will be identical to their active counterparts
(RTE MOD/ WPT MOD- RTE ACT/WPT ACT) and the CDU clearance
pages will display "ACT" as the first part of their title
line. When the clearance entries were made as modifications
to an existing active flight plan the "Erase" option is
given. The text "ERASE>" appears on the right hand side
of the last display line of the CDU when on the ROUTE,
LEGS, or TIME pages. If the pilot presses the line select
key adjacent the erase prompt, the changes to the clearance
are removed and the "ACT" mode is returned.

Three modules handle execution and rejection of the
provisional flight plan. Their descriptions are provided
on the following pages.



-102-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

EXECUTE
EXECUTE.FOR
SLOW
CDUEXC, DEMODE
CALL EXECUTE(MODE)

PURPOSE:
To activate the current provisional flight plan.

DESCRIPTION:
This procedure activates the provisional flight plan

by copying the MOD route and waypoint buffers to their
ACT counterparts• A number of simple steps are perfomed
when execution is required. They are enumerated below
in the appropriate sequence• Afterward more detailed
explanation is provided for those parts requiring it.

If a "POS" update waypoint starts the new plan, make
one last update of the waypoint by calling UPDATE_POS.

Signal guidance software (HVGUID) that the flight plan is
temporarily invalid by clearing the 2D, 3D, and 4D
guidance flags•

If not called with Auto execute flag, identify next "To"
waypoint and reset some phase of flight flags.

Copy the modified route buffer (RTE_MOD) to the active

buffer (RTE ACT). If a discontinuity is encountered

terminate the plan at that point.

Copy the modified waypoint buffer (WPT_MOD) to the

active (WPT ACT). Check altitude and speed definitions

at each waypoint to determine possible guidance modes.

Process execution of holding pattern data if entered

by calling HOLD_SET.

Perform cleanup on the constraint buffer by calling

CLEAN CON.

• Enable guidance remode (SETGD = 2).

Save new active data which may be modified on next plan

changes; airfield info, cruise alt, RTA waypoint.

Fetch destination runway information from navigation

database (AADCOM).



-103-

If not Auto execute mode reset EXEC and DSPLY lights
and set the active guidance waypoint pointer (PTR2D)
to the previously chosen "To" waypoint. Otherwise
check if PTR2D should be set to the active hold waypoint.

Fill in active display waypoint buffer by calling
CREATEBUF and flag display buffer transmission by
clearing GDTIME.

Selecting a "To" waypoint can be complicated. If
there was no previous active flight plan the second
waypoint is designated. If there was an active plan
several tests are made. When a current active leg is
part of a holding pattern the last PTR2D index is used
since waypoint trimming is not used for holding pattern

changes (see DEMODE). When trimming was enabled the

pointer is initialized to the second waypoint. However

the second waypoint corresponds to the last active

waypoint when changes to flight plan started. The

airplane may cross waypoints while entries are being

made. When this situation occurs the pointer is advanced

along the flight plan as along as one-to-one correspondence

remains in the following waypoints.

GLOBAL REFERENCES:

VARIABLES

ACTCNT ACTCRZ* ANTLAT* ANTLON* CLBCHNG* COSRH CRZALT

CRZCHNG* DESCHNG* DESCHNGI* GDTIME* GSA* GUID2D* GUID3D*

GUID4D* HLD2D* LT DSPY* LT EXEC* MODCNT ORGRWY* PMODE*

POSTIME* PTR2D* RTA INDX RTA PTR* RWYHDG RWYLAT* RWYLEN*

RWYLON* RYELEV* SAVPTR* SETGD* SINRH TST3D* TST4D*

ARRAYS

AIRPTS RTE CNT*

RECORD ARRAYS

ACT WPTS RTE ACT* RTE MOD WPT ACT WPT MOD

FUNCTIONS AND SUBROUTINES

CLEAN CON CREATE BUF EXIT GET REAL HOLD SET SCOSD UPDATE POS

XLAT RTE



-104-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

HOLD SET
EXECUTE.FOR
SLOW
EXECUTE, REJECT
CALL HOLD SET(MODE)

PURPOSE:
To setup active holding pattern data structures.

DESCRIPTION:
This module is called upon the execution of a provisional

flight plan or the rejection of modifications to an existing
active plan. It determines if a holding pattern exists in
the active flight plan and sets up a pointer to the hold
!FIX' waypoint and also saves its name. One other action is
taken when the pattern is found, which will depend on
whether the call to HOLD SET was made from EXECUTEor
REJECT. On execute, the hold pattern database set up by
hold page software, is saved in local memory. On reject the
saved active database is restored to replace changes that
may have been made to the holding pattern.

GLOBAL REFERENCES:

VARIABLES
ACTCNT HLD PTR* HLD WPT*

ARRAYS
START

RECORDARRAYS
WPTACT

FUNCTIONS AND SUBROUTINES
LIBSMOVC3



-105-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

REJECT

EXECUTE.FOR

SLOW

LEGS, LEGS TIME, ROUTE

CALL REJECT

PURPOSE:

To remove all changes to the last active flight plan.

DESCRIPTION:

This module is called when the pilot chooses to reject

the changes made to the current active flight plan. The

following information sequentially lists the steps taken

to restore the active flight plan to the MOD buffers.

Set the CDU mode to "ACT" and clear POS update waypoint

flag (if one existed).

Copy the active waypoint buffer into its MOD buffer.

Copy the active route buffer into its MOD buffer.

Restore holding pattern parameters by calling HOLD SET.

Free unused constraint buffer locations by calling
CLEAN CON.

Restore miscellaneous flight plan variables;

cruise alt, RTA waypoint.

airfields,

. Turn off EXEC and DSPLY lights.

Expand restored route buffer to data-link text buffer
if enabled.

GLOBAL REFERENCES:

VARIABLES

ACTCNT ACTCRZ CDU CMD CRZALT* LT DSPY* LT EXEC* MODCNT*

ORGRWY PMODE* POSTIME* RTA INDX RTA PTR RTA WPT*

ARRAYS

AIRPTS* RTE CNT*

RECORD ARRAYS

RTE ACT RTE MOD* WPT ACT WPT MOD*

FUNCTIONS AND SUBROUTINES

CLEAN CON EXPAND RTE HOLD SET





-107-

Section 6.3 THE FLIGHT PLANNING PAGES

The CDU has numerous ways of generating and modifying
the aircraft's flight plan. There are seven CDU pages

dedicated to this purpose, not including the phase of

flight or initialization pages which allow cruise altitude

selection. The following sections give a brief outline

of the usage for each page followed by descriptions of the

software modules used. A detailed functional description

of the CDU clearance pages will be provided in another

document to be provided by NASA's CDU requirements designer.

pA,I_.__._L,C__II'ITErlTI0t'IALLYBLANI&

PRECEDING PAGE BLANK NOT FILMED





-109-

Section 6.3.1 THE DEPARTURE/ARRIVAL PAGE

The DEPARTURE/ARRIVAL pages provide the flight crew

with departure and arrival information for the origin and

destination airports or for any other airport in the

navigation database (AADCOM). Also, these pages allow

the flight crew to insert departure and arrival route

elements into the route buffer by pressing the labeled

LSKs.
The DEPARTURE/ARRIVAL INDEX page provides access to the

DEPARTURE subpage and the ARRIVAL subpage, where specific

information about each airport is displayed. On the

DEPARTURE subpage, all SIDs and runways listed in AADCOM

for the selected airport, are diplayed. On the ARRIVAL

subpage, all STARs, approaches and runways for the selected

airport are displayed. <SEL> and <ACT> bugs are displayed

next to the route elements which are part of the current

provisional or active flight plan. Refer to figures 6.1

and 6.2 on the following pages.

pIr@ECEgI._G PAGE t]LANK NOT FILMED





-iii-

m

m

u

m

D

u

<DEP

DEP/ARR INDEX I/I

KLFI RETURN>

KWAL ARR>

DEP ARR

< OTHER .... >

m

m

m

The Departure and Arrivals
Index Page

(figure 6.1)

PA6E_//O INI-ENrlONALLY BLANIK PRECEDING PAGE 8LANIK NOT FILMED





-113-

KWAL

STARS

ML3SCL

WFSXX

<D/A INDEX

ARRIVALS 2/3

APPROACHES

GPSILS
RUNWAY S

04

10

<SEL> 17

MORE

22

ROUTE>

B

The Arrivals Page

(figure 6.2)

P_ /[Oq" INTENTIONALLY BL,_N_ PR_ECEDIrq_G PAGE @LANK NOT FILMED





-115-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

DA INPUT

DEPARR.FOR

SLOW

DEPARR

CALL DA INPUT

PURPOSE:

To parse CDU data entries for the DEPARTURE or ARRIVAL

page.

DESCRIPTION:

This subroutine is called when a data entry is detected

while on the DEPARTURE or ARRIVAL subpage. Valid entries

on this page are limited to the following:

• Requesting the DEPARR index page or ROUTE page. If there

is data on the scratch pad, it is reprogrammed back onto

the scratch pad for use by the requested page.

• Display NEXT or PREVious section of currently dispalyed

page

• Insert a route element into the flight plan, by calling

MOD ROUTE, provided that it is not already a part of the

provisional or active flight plan. This is only a valid

data entry when on the DEPARTURE page and the ORIGIN

airfield is shown or when on the ARRIVAL page and the

origin or desination airfield is shown•

• Delete a route function from the provisional or active

flight plan, by calling MOD ROUTE•

GLOBAL REFERENCES:

VARIABLES

DST ERCODE* NUMPGS ORG PASS* PGRQST* SUBPAG*

ARRAYS

ENTRY SIDLINE

FUNCTIONS AND SUBROUTINES

DEL IN FMTOUT MOD ROUTE REPROG SET SIDLINE

PF_'CEDING PAGE BLANK NOT FILMED



-116-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

DEPARR

DEPARR.FOR

SLOW

CDUEXC

CALL DEPARR

PURPOSE:

To serve as the DEPARTURE/ARRIVAL page executive module.

DESCRIPTION:

This subroutine is the main procedure for the DEPARTURE/

ARRIVAL page software. It performs a few top-level functions

beginning with first pass initialization and the computation

of a few variables used by other modules. Input to the

DEPARTURE/ARRIVAL page is handled by one of two modules,

INDX_INPUT or DA_INPUT, depending upon which subpage of the

DEPARURE/ARRIVAL page is presently active. This procedure

also monitors the global variable PMODE so that in the event

the execute button is pressed, the subroutine SET SIDLINE is

called to update the <SEL> and <ACT> bugs on the D--EPARTURE

or ARRIVAL subpages. A call to the screen update procedure,

REFRESH_DA, is made every time the CDU executive calls DEPARR,

with one exception. When a new subpage has been requested,

the update of the CDU screen is delayed for one pass to allow

time for route function information to be updated.

GLOBAL REFERENCES:

VARIABLES

PAGE PASS* PGINIT* PLAN* PMODE SUBPAG* SUBPGINIT

ARRAYS

ENTRY*

FUNCTIONS AND SUBROUTINES

DA_INPUT INDX_INPUT PAGE_COUNT REFRESH DA SET SIDLINE



-117-

MODULENAME:
FILE N_d_E:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

INDX INPUT
DEPARR.FOR
SLOW
DEPARR
CALL INDX INPUT

PURPOSE:
TO parse CDU data entries for the DEPARTURE/AP_IVAL

INDEX page.

DESCRIPTION:
This subroutine is called when a data entry is detected

while on the DEPARTURE/AB/_IVALINDEX page. The following
list describes the requests which are valid data entries.

• display DEPARTUREinformation for the ORIGIN airfield

. display ARRIVAL information for the ORIGIN airfield, for
emergency return•

• display ARRIVAL information for the DESTINATION airfield.

• display DEPARTUREor ARRIVAL information for the specified
airfield contained in AADCOM.

Upon receipt of a valid data entry, some initialization
variables are set, including the PAGE variable which is set
to reflect the page number of the requested page.

GLOBAL REFERENCES:

VARIABLES
ADDR DST* ERCODE*ORG* PAGE* SUBPGINIT*

ARRAYS
AIRPTS ENTRY

FUNCTIONS AND SUBROUTINES
DEL IN LUARP



-118-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

ITEM ADDR
DEPARR.FOR
SLOW
SET SIDLINE
PATHADDR= ITEM ADDR (ITEM)

PURPOSE:
To return the address in AADCOMof the first SID or

the last STAR or approach in the route buffer.

DESCRIPTION:
This function searches the route buffer for the first

occurrance of a route function of type ITEM. The types
are identified by an integer value where, approach=5,
SID=6, and STAR=7. Because the route buffer may contain
more than one route function of a certain type, the
function searches the buffer, from bottom to top, for the
first SID or the last STAR or approach in the buffer. If
searching for a STAR or approach, the search halts when
the item is located. If searching for a SID, then the
search continues if a SID is found to ensure that it is
the first SID in the path.

GLOBAL REFERENCES:

ARRAYS
RTE CNT

RECORDARRAYS
RTE MOD



-119-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

ITEM COUNT
DEPARR.FOR
SLOW
PAGECOUNT
NUM = ITEM COUNT(ADDR, OFFST)

PURPOSE:
TO determine the number of SIDs, STARs, approaches or

runways which are available at the selected airfield

DESCRIPTION:
This function searches for the end of a list of addresses

of SIDs, STARs, approaches or runways. It begins the search
at location ADDR, increments the search address by the value
contained in OFFST, and continues until it finds a zero
valued address. It returns the computed number of items in
the list.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
GET LONG



-120-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

MODIFY
MODIFY.FOR
SLOW
RT NEW, MODROUTE
CALL MODIFY(ADDRESS, TYPE, CLEAR_FLG)

PURPOSE:
TO place airfield selection into the route buffer.

DESCRIPTION:
This subroutine is called by the Departutes/Arrivals

page of the CDU to make modifications to the flight plan.
Insertions and Deletions of SIDs, STARs, Approaches, and
runways may be requested. Note that insertions become
replacements when the inserted type already exists.

Special processing occurs when the third parameter of
the call list is set. This flag indicates the desire to
return to the departure airfield after takeoff, usually
for emergency situations. A waypoint is created at the
current aircraft position. This waypoint is created as a
I0 second update waypoint (see section 1.5.3.2). The
route element selected on the DEP/ARR page is then placed
in the route buffer with a call to WAYPOINTor GROUPand
the remainder of the flight plan is deleted.

If a selected type is a route function a search of the
route buffer is made to find an existing element of the type
passed in the parameter list. If found, the element is
deleted by a call to KILL and inserted by a call to GROUP.

If a match is not found the position of insertion is
Determined by the element type. An approach is always
placed as the last element in the buffer. SIDs are first
unless a takeoff runway is present, in which case they are
placed after the two runway waypoints. STARs are placed at
the end unless a touchdown runway is defined. They are
inserted two positions before the end to account for either
two runway waypoints or an approach with its entry waypoint.

Deletions of route functions are requested when the type
parameter is set to "DELETE". The actual type of the route
function is not needed to remove it from the buffer since
the passed address is used to locate the element.

Origin and destination runways have the types "RWYI" and
"RWY2". The address parameter contains a pointer to the
navigation database when an insertion is requested. If the
address value is zero a deletion is desired.

GLOBAL REFERENCES:

VARIABLES
ALTCOR ERCODE* GS LAT LON POSTIME* TIME



-121-

ARRAYS
AIRPTS RTE CNT

RECORDARRAYS
RTE MOD

FUNCTIONSAND SUBROUTINES
DEL_RTE GROUPKILL MAKE WPT ORGRWYREMOVEWAYPOINT



-122-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

MODROUTE
DEPARR.FOR
SLOW
DA INPUT
CALL MODROUTE(ITEMNAME, ADDIT)

PURPOSE:
To insert or delete route functions on the DEPARR

page.

DESCRIPTION:
This subroutine searches for a route function, whose

name is given by the input parameter ITEMNAME, in BULK
DATA with a call to LUSID. It then calls MODIFY with the
address and type of the route function to be inserted or
deleted from the provisional or active route buffer. The
boolean input parameter ,ADDIT, specifies whether the item
is to be inserted or deleted. Finally, this routine
calls DEMODEwith a parameter of NOEXECto create the new
waypoint buffer and allow the pilot to execute the new
path.

Note the special case where a route function has been
selected on the ARRIVAL page and the ORIGIN airfield is
shown. This indicates an emergency request to return to
the departure airfield, and some special processing
occurs. The origin airfield becomes the new destination
airfield and the origin and destination airfield flags,
which affect the informational display and input parsing
on the DEPARRpage, are updated appropriately.

GLOBAL REFERENCES:

VARIABLES
ADDR DST* ORG* PAGE PASS*

ARRAYS
AIRPTS*

FUNCTIONS AND SUBROUTINES
DEMODELURWYLUSID MODIFY SET SIDLINE



-123-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

PAGE COUNT
DEPARR.FOR
SLOW
DEPARR
CALL PAGE COUNT

PURPOSE:
TO compute the number of subpages required to display

route function information for a selected airfield.

DESCRIPTION:
If the DEPARTUREsubpage has been requested, this subroutine

compares the number of SIDs and runways available in BULK
DATA for the selected airfield and chooses the larger of the
two to determine the number of pages required for the DEPARTURE
subpage. If the ARRIVAL subpage has been requested, it
compares the number of STARs with the number of approaches and
runways and chooses the larger of the two to compute the
necessary number of subpages. One page is required to display
five lines of route functions.

GLOBAL REFERENCES:

VARIABLES
ADDR NUMAPPNUMBOTHNUMPGS*NUMSSPAGE

FUNCTIONS AND SUBROUTINES
GET LONG ITEM COUNT

m



-124-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

REFRESH DA

DEPARR.FOR

SLOW

DEPARR

CALL REFRESH DA

PURPOSE:

To update the CDU display for the DEPARURE/ARRIVAL pages.

DESCRIPTION:

This subroutine updates the CDU display for the DEPARTURE/

ARRIVAL INDEX page, the DEPARTURES subpage or the ARRIVALS

subpage with calls to FMTOUT. The entire screen is updated

every eight consecutive calls to this subroutine. The value

of PASS determines which particular lines are updated. During

the first call of the cycle, the appropriate page title is

output along with an indication of the current and last page

numbers.
If the DEPARTURE/ARRIVAL INDEX page is currently active,

then the name of the ORIGIN airfield is shown on line #2

along with the labels for the LSKs which provide access to

the DEPARTURE and ARRIVAL subpages. If no ORIGIN airfield

exists in the current provisional flight plan, then blanks

are displayed in place of the airfield name. Likewise, the

name of the DESTINATION airfield is displayed on line #4 along

with the label for the LSK which provides access to the

ARRIVAL page. Again, if no DESTINATION airfield is present

in the current flight plan, then blanks are diplayed in

place of the name. Lines #Ii and #12 of the display contain

labels for the LSKs which provide access to the DEPARTURE and

ARRIVAL subpages for information on any airfield contained in

AADCOM.

If either the DEPARTURE or ARRIVAL subpage is currently

active then line #i will contain headings for the lists of SIDs,

STARs, approaches or runways available at the selected airfield.

Route element information is displayed on lines #2, #4, #6, #8,

and #i0. This route element information is contained in the

array, SIDLINE, which is updated by the subroutine, SET SIDLINE.
Line #ii contains a dashed line, with the label "more" Tf additional

pages of information are available. Line #12 contains labels for

the LSKs which provide access to the INDEX and ROUTE pages.

GLOBAL REFERENCES:

VARIABLES

ADDR LBL NUMAPP NUMPGS PAGE PASS* SUBPAG

ARRAYS

AIRPTS DASHES SIDLINE

FUNCTIONS AND SUBROUTINES

FMTOUT



-125-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

SET SIDLINE
DEPARR.FOR
SLOW
DEPARR, DA INPUT, MODROUTE
CALL SET SIDLINE

PURPOSE:
To format lines of route element information for display

on the DEPARTUREor ARRIVAL page of the CDU.

DESCRIPTION:
This subroutine is called to update the information in

the array SIDLINE, which contains appropriate route element
information for the selected airfield. This information is
displayed by the subroutine REFRESHDA. Each element of the
array SIDLINE is a string of 24 characters and corresponds to
a display line on the CDU. The information contained in
SIDLINE is updated when either the DEPARTUREor ARRIVAL page
of the CDU is initially requested, and whenever the NEXT or
PREVious subpages of the DEPARTUREor ARRIVAL page are
requested.

If the DEPARTUREpage is currently active, then the left
side of each line will contain the name of a SID and the
right side of each line will contain a runway number,
available in A_COM for the selected airfield. If the
selected AIRFIELD is the ORIGIN airfield then <SEL> or <ACT>
bugs will be displayed next to the route elements which are
part of the current provisional or active flight plans. If
the current clearance mode is ACT then <ACT> bugs will be
displayed, otherwise <SEL> bugs will be displayed.

If the ARRIVAL page is currently active, the left side of
each line will contain available STARs and the right side
will contain the names of available approaches and runways
for the selected airfield. If the selected airfield is the
DESTINATION airfield then <SEL> or <ACT> bugs will be
appropriately displayed next to route elements which are
present in the current provisional or active flight plans,
again, dependent upon the current clearance mode.

Based on the value of SUBPAGE, this routine determines which

portion of the route element lists should be displayed, and

stores the appropriate names in the array SIDLINE. Also

it sets a flag which tells the subroutine REFRESH DA where

to display the header for the list of runways for a given

airfield. This is not a static position since the runway

header must follow the last approach for a selected airfield.



-126-

GLOBAL REFERENCES:

VARIABLES
ADDR DST NUMAPPNUMBOTHNUMSSORGPAGE PLAN* PMODE
RWYLABEL* SUBPAG

ARRAYS
AIRPTS SIDLINE*

FUNCTIONS AND SUBROUTINES
GET CHAR GET LONG ITEM ADDR



-127-

Section 6.3.2 THE DIRECT/INTERCEPT PAGE

This page is a variation of the LEGS page. The CDU
display is the same except for "Direct To" and "Intercept
Leg" prompts on the bottom. Section 6.3.4 describes the
standard LEGS page and should be referenced to understand
the DIR/INTC page. This section describes the three modules
unique to the DIR/INTC page which are on the file INTC.FOR
(Refer to figure 6.3 on the following page).

Two operations are performed on this page besides the
standard LEGS page functions. The first option creates a
waypoint at the airplanes present position and connects it
to the selected "To" waypoint. If the chosen waypoint is
part of the current flight plan the remaining waypoints
along the path are kept. The second option, like the first,
requires a "To" waypoint entry. Once selected the CDU
screen is updated to prompt for an inbound bearing. A new
waypoint is generated 100 nautical miles away from the
selected waypoint to define a leg with the desired inbound
bearing. Remaining flight plan waypoints are kept for
this operation also.

Note that the pilot defined waypoint created at the
aircraft position is updated every ten seconds to the
current aircraft position until the flight plan is made
active.





-129-

D

m

m

M

m

m

ACT RTE LEGS 1/1

I 32" 1 NM

WFBBB 190/ 4000
L TURN 6NM

WFBBC 1501 4000
353" 2NM

WFBBD 150/ 4000
353" 4NM

WFBBE 150/ 2723

-DIRECT TO ' NTC LEG-
IIlII T0 IlugI

m

B

m

B

m

m

The Direct/Intercept Page

(figure 6.3)

P,,AO__.. ,'_v_m,_N,_r.tysam
PRECEDING PAGE 6!.ANK NOT FILBI_)





-131-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

DIRECT

INTC.FOR

SLOW

LEGS

CALL DIRECT

PURPOSE:

To create a "Direct To" flight plan.

DESCRIPTION:

This subroutine is called when either a "Direct To" or

"Intercept Leg" entry is made on the DIR/INTC page of the

CDU. The selected waypoint's name is in the global CDU

entry buffer (ENTRY). Two valid situations may occur. If

the entered waypoint is found on the current flight plan,

all waypoints before the chosen one are removed from the

route buffer and the current aircraft position is inserted

as the "From" waypoint. When the waypoint is not entered

on the current flight plan a two waypoint path is generated

consisting of the current position and the selected waypoint.

A "Direct To" may not be performed to a holding pattern

waypoint. If attempted an error condition is flagged. The

function MAKE WPT is called to create the waypoint at the

aircraft position. The new waypoint is assigned the current

altitude and ground speed of the aircraft. The "From"

format of the standard legs page is requested once complete.

GLOBAL REFERENCES:

VARIABLES

ALTCOR ERCODE* FROMPG* GS LAT LON MODCNT PGRQST* PMODE

POSTIME* PTR2D TIME

ARRAYS

AIRPTS ENTRY RTE CNT*

RECORD ARRAYS

RTE MOD* WPT MOD

FUNCTIONS AND SUBROUTINES

BREAK MAKE WPT OPEN PAD NAME TRIM WPTS WPT ID

I_II_ _._0 INTF_;T_OlffAILTBIAl_ PRECEDII_G _AG_E __A_ NO7 F!LMED



-132-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

INTC MGR
INTC.FOR
SLOW
CDUEXC
CALL INTC MGR

PURPOSE:
To call the LEGS executive requesting the DIR/INTC

variation.

DESCRIPTION:
The only thing done by this module is to call LEGS

with the DIR/INTC parameter.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
LEGS



-133-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

INTERCEPT
INTC.FOR
SLOW
LEGS
CALL INTERCEPT

PURPOSE:
To create an "Intercept Leg" waypoint.

DESCRIPTION:
This subroutine is called when the final entry is made

on an "Intercept Leg" creation. The inbound bearing is
decoded from the CDU entry line and used to create a pilot
defined waypoint 100 nautical miles from the previously
selected "To" waypoint. The last "From" waypoint, generated
by DIRECT after the "To" waypoint selection, is replaced
by the new waypoint to form the desired inbound path leg.

GLOBAL REFERENCES:

VARIABLES
ALTCOR ERCODE* FROMPG*GS PGRQST*

ARRAYS
ENTRY

RECORDARRAYS
RTE MOD* WPT MOD

FUNCTIONS AND SUBROUTINES
FLTVAL MAGVAR MAKE WPT NEWPOS





-135-

Section 6.3.3 THE HOLD PAGE

The HOLD page is used by the flight crew to create a
holding pattern at the present airplane position or at any
waypoint contained in the waypoint buffer (except DME turn
waypoints). When the HOLD key of the CDU is pressed, a
special variation of the LEGS page format, the LEGS-HOLD

page, is displayed. If a holding fix is selected, a

variable HLD_WPT is assigned the name of the holding fix

and a holding pattern is set up with default parameters,

by calling HOLD INIT. The holding pattern is inserted into

the provisional--route buffer as well as the waypoint buffer

and the HOLD page format is displayed on the CDU. The HOLD

page allows the flight crew to modify the default

parameters of the holding pattern and execute the new

programmed route. Holding pattern parameters which may be

modified include the direction of turns in the holding

pattern, the holding speed and the bearing to the holding

fix. The flight crew may also specify the time required to

fly a straight leg of the holding pattern or the length of a

straight leg in nautical miles (Refer to figure 6.4 and
6.5 on the following pages).

When a holding pattern is created, four points which

comprise the holding pattern are defined and inserted into

the provisional waypoint buffer. The names of the

waypoints which make up the holding pattern are HOLD1,

HOLD2, HOLD3 and HOLD4. These waypoints are inserted into

the path just prior to the position of the holding fix.
The holding fix and the waypoint HOLD1 have the same

latitude, longitude and altitude (if one exists for the

fix) and are combined with the other hold waypoints to
form a path section.

When the autopilot is engaged flying a holding pattern,
the airplane repeatedly flys the holding pattern until a

request is made to exit. Each time the airplane passes

waypoint HOLD4, a check is made in HVGUID to see if a

request has been made to exit the holding pattern,

indicated by EXHOLD. If no request has been made to exit

the holding pattern, the active "to" waypoint pointer is

set back to point to HOLD1. Otherwise, the holding fix

becomes the active "to" waypoint.

It is possible to create a holding pattern in the

provisional flight plan which differs from the holding

pattern in the active flight plan. Additional bookkeepng

is performed to provide this capability.

_£_L____i!_ IEN [IONALLY BLANK
PRE'_EOIN_ P_,':,,;F P!,.AN_ NOT F!LME'D





-137-

ACT RTE

1 32"

L TURN

WFBBC
353"

WFBBD
353"

WFBBE

__=_

Illlllllllll

LEGS

1NM

6NM

2NM

4NM

HOLD AT

1/1

190/ 4000

150/ 4000

150/ 4000

150/ 2723

PPOS>

m

/

The Legs Hold Page

(figure 6.4)

pRECEDING PA'_E I_LA,_K I'_QT FILMED





-139-

m

m

m

M

m

ACT RTE HOLD I/I

FIX

ILLAR
TURN DIR

R
INBND

217
LEG T IME

1 OM,N
LEG DIST

3.5NM

CRS EX

TGT 5PD

210KT
FIX ETA

1445:00
IT TIME

<ERASE EXIT HOLD>

The Hold Page

(figure 6.5)

PRECEDING PAGE BLANK NOT FILMED





-141-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

GET ETA

HOLD.FOR

SLOW

HOLD_INPUT, REFRESH_HOLD
ETA = GET ETA

PURPOSE:

To compute the estimated time of arrival (ETA) at the

holding fix.

DESCRIPTION:

This routine computes the ETA at the selected holding

fix. It accumulates the distance to the holding fix by

adding the distance to the next waypoint, DTOGO, to the

distances along each of the legs of the path which lie

between the airplane and the holding fix. It divides

the accumulated sum by the current ground speed in feet
per second and adds the result to the current time. The

ETA is computed and displayed only when the current

clearance mode is ACT, the airplane position is within

the holding pattern and ground speed is greater than zero.

GLOBAL REFERENCES:

VARIABLES

DTOGO GS HLD PTR PMODE TIME TOWPT

RECORD ARRAYS

WPT ACT

PA_ /._O .t_Er_TION,_LLy BLANIK

pRECEDING PAGE 8tANK NOT FILMED



-142-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

HOLD INIT

HOLD.FOR

SLOW

HLD IN

CALL HLD INIT (INDEX)

PURPOSE:

To create an initial holding pattern with default

parameters.

DESCRIPTION:

This routine is called from the LEGS-HOLD page when a

holding fix is selected. The input parameter is an index

into the waypoint buffer designating the position of the

holding fix. When this routine is called some flags are

initialized and a holding pattern is created with the

following defaults:

- holding pattern turns are right turns

- inbound course to fix is path bearing at fix waypoint

- hold speed is 210 kts

- if fix altitude is greater than 14000 feet, the

default leg time is 1.5 minutes, otherwise it is 1 minute

This routine calls the the LENGTHS routine to compute the

radius of the holding pattern turns, HLDRAD, and the lengths

of the straight legs of the holding pattern, LEG LEN. It

calls POINTS to compute the positions of the fou_ waypoints

which define the holding pattern and stores the necessary
values in HLDBUF.

GLOBAL REFERENCES:

VARIABLES

DELHOLD* EXHOLD* HLD WPT* MODCNT PGINIT*

RECORD ARRAYS

WPT MOD

FUNCTIONS AND SUBROUTINES

ANGL LENGTHS MTH$SIGN POINTS



-143-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

HOLD INPUT
HOLD?FOR
SLOW
HLDWPT
CALL HOLD INPUT(I)

PURPOSE:
To parse CDU data entries for the main HOLD page.

DESCRIPTION:
This subroutine is called when a data entry is detected

while on the HOLD page. Valid entries on this page are
limited to the following:

Deleting the holding pattern from the provisional or
active flight plan.

. Echoing the ETA into the scratch pad.

• Toggling the turn direction of the holding pattern.

• Requesting exit of holding pattern.

• Entering a new holding pattern speed, leg length or
leg time.

• Cancelling the deletion of or exit from a holding pattern.

Note that once a holding pattern has been executed and flown,
the holding pattern remains on the MAP display, even after it
has been exited• If the HOLDpage of the CDU is requested,
the holding pattern information is displayed and the message
"EXIT HOLD PATTERN ARMED" remains on line #12 of the CDU. To
enable removal of the holding pattern from the flight plan
and MAP display, after the holding pattern has been exited,
special input processing has been implemented• The word
"DELETE" may be entered using LSK-L6 or LSK-R6. This displays
the ERASE label for LSK-L6 and therefore allows the holding
pattern to be erased. This required special processing in the
flight plan modification code since "dead" waypoints cannot
be deleted under normal conditions•



-144-

GLOBAL REFERENCES:

VARIABLES
DELHOLD* ERCODE* EXHOLD* HLD2D* LT_EXEC* PMODEPTR2D
TIMED LEG

ARRAYS
ENTRY

RECORDARRAYS
WPT MOD

FUNCTIONS AND SUBROUTINES
ANGL DEL IN DEMODEFLTVAL FMTOUTFMTTIM GET_ETA KILL
LENGTHSMTH$SIGN POINTS



-145-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

HLD MGR
HOLD.FOR
SLOW
CDUEXC
CALL HLD MGR

PURPOSE:
To call the appropriate HOLDpage module.

DESCRIPTION:
This routine determines which HOLDpage format should be

displayed and calls the appropriate executive module. The
HOLD page format is displayed only if the variable HLD WPT
contains the name of a fix waypoint, otherwise the LEGS-HOLD
page is displayed. When the HOLD format is required, the
routine HLDWPTis called with the index of the holding fix.
When the LEGS page is required, LEGS is called with a
parameter of 2 to indicate that the HOLD variation of the
LEGS format is to be displayed.

GLOBAL REFERENCES:

VARIABLES
HLD WPT

RECORDARRAYS
WPT MOD

FUNCTIONSAND SUBROUTINES
HLDWPTINDX LEGS



-146-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

HLDWPT
HOLD.FOR
SLOW
HLD MGR
CALL HLD MGR(INDEX)

PURPOSE:

To serve as the HOLD page executive module

DESCRIPTION:

This subroutine is the main procedure for the HOLD page

software. It performs a few top-level functions including
first pass initialization. The input parameter is an index

into the waypoint buffer designating the position of the

holding fix. Input to the HOLD page is handled by the

module HOLD INPUT. A call to the screen update module,

REFRESHHOLD, is made every time the HOLD page executive
module, HLDWPT, is called.

GLOBAL REFERENCES:

VARIABLES

PASS* PGINIT*

ARRAYS

ENTRY*

FUNCTIONS AND SUBROUTINES

HOLD INPUT REFRESH HOLD



-147-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

INDX
HOLD.FOR
SLOW
HLD_MGR, LENGTHS
I = INDX(NAME)

PURPOSE:
To locate the holding fix in the waypoint buffer.

DESCRIPTION:
This function is called with the five character name

of the holding fix waypoint. The waypoint buffer is
searched and the index into the structure is returned.
A zero index is returned when the fix waypoint is not
found in the waypoint buffer.

GLOBAL REFERENCES:

VARIABLES
MODCNT

RECORDARRAYS
WPT MOD



-148-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

LENGTHS
HOLD.FOR
SLOW
HOLD_INIT, HOLD_INPUT
CALL LENGTHS(TIME, SPD, LEN, RAD)

PURPOSE:
To compute the radius of the turns and the lengths of

the straight legs of the holding pattern.

DESCRIPTION:
This routine is called on creation of a holding pattern

or when leg time or holding speed are modified by crew
inputs to the CDU HOLD page. The input parameters are the
desired time, in minutes, to fly one straight leg of the
holding pattern and the requested speed in knots. The
length for the straight legs of the holding pattern as well
as a new turn radius for the holding pattern are computed
using the following equations:

length = speed in feet per second * time in seconds
2

radius = (true airspeed + wind speed) /

(gravitational acceleration * tan (nominal bank angle))

GLOBAL REFERENCES:

VARIABLES

HLD WPT

RECORD ARRAYS

WPT MOD

FUNCTIONS AND SUBROUTINES

INDX



-149-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

POINTS
HOLD.FOR
SLOW
HOLD INIT, HOLD INPUT

u

CALL POINTS(I, RAD, LEGLEN, INCRS, SPD)

PURPOSE:

TO create the four waypoints which define a holding

pattern.

DESCRIPTION:

This routine computes the positions of the four waypoints

which define a holding pattern at the selected holding fix.

The input parameters are as follows:

I - an index into the waypoint buffer designating the

position of the holding fix

RAD - the holding pattern turn radius in feet

LEGLEN - the length in feet of one of the holding pattern

straight legs

INCRS - the bearing of the path segment preceeding the

holding fix

SPD - the desired speed for the holding pattern (knots)

For each waypoint, the latitude and longitude are computed

with a call to PROJPOINT. Along with latitude and longitude,

the altitude, speed, turn radius, and associated navaid must

be stored in HLDBUF for use by the path definition modules.

The speed and turn radius are determined by the values of the

input parameters RAD and SPD. The associated navaid is the

the same as that of the holding fix. If the altitude flag in

the waypoint buffer is set for the holding fix, then the

altitude of the hold waypoints are set equal to the altitude

of the holding fix, otherwise the default altitude of 15,000

feet is used. Also, note that the holding pattern turns are

defined as DME turns. The latitude and longitude define the

turn center, and therefore the bearing from the turn center to

the inbound waypoint must be stored, and the altitude must be

negated to indicate that they are inbound waypoints. For the

outbound waypoints, the turn angle must be stored. (see

AADCOM format description for SID/STAR Route functions)

GLOBAL REFERENCES:

RECORD ARRAYS

HLDPTN* HLDPTS* WPT MOD

FUNCTIONS AND SUBROUTINES

ANGL LOCAL ERAD MTH$SIGN PROJPOINT SCOSD



-150-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

PROJPOINT
HOLD.FOR
SLOW
POINTS
CALL PROJPOINT(PTI, BRG, DIST, PT2)

PURPOSE:
To compute a waypoint latitude and longitude.

DESCRIPTION:
This routine computes the latitude and longitude of a

waypoint given a reference waypoint and a bearing and
distance from that point. It uses LATFT and LONFT which
are created by LOCAL ERAD. The PTS structure is used so
that the computed latitudes and longitudes can be stored
directly into HLDBUF.

GLOBAL REFERENCES:

VARIABLES
LATFT LONFT

FUNCTIONS AND SUBROUTINES
SCOSD



-151-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

REFRESH HOLD

HOLD.FOR

SLOW

HLDWPT

CALL REFRESH HOLD(I)

PURPOSE:

To update the CDU display for the HOLD page.

DESCRIPTION:

This subroutine updates the CDU display for the HOLD page

with calls to FMTOUT. The entire screen is updated every

fourteen consecutive calls to this subroutine. The value of

PASS determines which particular lines are updated. During

the first call of the cycle, the page title is output along

with an indication of the current and last page numbers.

Information about the holding pattern is displayed on lines
#i through #I0. This information includes:

. the name of the holding fix

the direction of holding pattern turns

the target speed for the holding pattern

• the holding pattern leg time and leg distance

the bearing of the leg which aproaches the holding fix

• the estimated time of arrival at the holding fix

• the desired holding pattern exit time

The LSK labels which are displayed on line #12 depend upon
current clearance mode. If the current clearance mode is

original or MOD then an ERASE label is displayed on the left

side of this line, if the current clearance mode is ACT then

initially the ERASE label is displayed on the left and EXIT

HOLD is displayed on the right side of this line. If the

LSK labelled EXIT HOLD has been pressed then the message,

"EXIT HOLD PATTERN ARMED", will be displayed on line #12,

and if the LSK labelled ERASE has been pressed when the

current clearance mode is ACT then the message, "DELETE

HOLDING PATTERN" will be displayed on line #12.

GLOBAL REFERENCES:

VARIABLES

DELHOLD EXHOLD HLD WPT PASS* PMODE

RECORD ARRAYS

WPT MOD

FUNCTIONS AND SUBROUTINES

ANGL FMTOUT FMTTIM FSTRNG GET ETA MTH$SIGN TITLE





-153-

Section 6.3.4 THE LEGS PAGE

The LEGS page of the CDU allows the entry, manipu-
lation, and application of constraints to flight plan
waypoints. Four separate CDU pages actually use the
LEGS page format. The various pages are listed below
along with CDU access information.

LEGS - The standard legs page which is accessed by
using the LEGS key or selecting the "<LEGS" option on
the ROUTE INDEX page.

DIRECT/INTERCEPT - This page uses the LEGS format except
for the addition of the box prompts displayed on the
bottom which allow the entry of the destination waypoint.
Once the waypoint is selected this page automatically
transfers to the standard legs page. The DIR/INTC key
is the only access to this page.

HOLD - This page uses the LEGS format only until the hold
waypoint is selected, at which time the hold page uses
its unique page format. The only deviation from the
standard legs page is the box prompts provided for
hold waypoint entry.

FROMWAYPOINT - This page is accessed by selecting the
"<FROM WPT" prompt on the ROUTE INDEX page. This page
differs from the standard legs page in that only the
first waypoint shown. The active LEGS page starts with
the "To" waypoint while the FROMpage uses the "From"
waypoint. The modified (MOD) LEGS page starts with
the second flight plan waypoint while the FROMpage
uses the first. Both pages are identical in the
initial clearance mode (start with #i).

Note that any LEGS page operations may be performed while
on the other variations of the LEGS page. Refer to figure

6.6 for a picture of the standard LEGS page.

Individual waypoints may be entered and deleted on the

LEGS page. The altitude, ground speed, and turn radius

constraints associated with the waypoint may also be

entered. As many "sub-pages" as necessary are maintained

to cover the entire flight plan. The current and last

page numbers are shown on the LEGS title line. For a

detailed functional description of the LEGS page refer

to the CDU requirements produced by Charlie Knox of NASA.

The remaining pages of the section explain the 25 modules

associated with the LEGS page. Other sections of this

document must be referenced for information about the

variations of the standard LEGS page.

IPAQE.___q_ _NLr_,T_ONAI_lyBLA/_ PRIZCEDING PAGE BLANK NOT FILMED





-155-

i

m

m

E

i

ACT RTE

1 32"

WFBBB
L TURN

WFBBC
353"

WFBBD
353 °

WFBBE

LEGS

1NM

6NM

2NM

4NM

190/

150/

150/

150/

<INDEX

1/1

4OOO

4000

4000

2723

The Legs Page

(figure 6.6)

P_ INT_-NTIONALLY BLANK ....._ .i ._i_._: _,q,T r.'t',_j_,r_





-157-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

ADD WPT

LEGS.FOR

SLOW

HLD POS, WPT DATA

CALL ADD WPT(INDEX)

PURPOSE:

To insert a waypoint into the flight plan.

DESCRIPTION:

This procedure adds a waypoint to the flight plan by

creating a waypoint in the route buffer. Three cases must

be accounted for. The waypoint may be appended to the end

of the route buffer, inserted at a route dicontinuity, or

inserted between flight plan waypoints. When inserted

between waypoints that are part of a route function, the

route function must be split into separate parts. This

procedure is also used to update the active "To" waypoint.

When a waypoint which appears further along in the flight

plan is entered at the current "To" waypoint, which is

highlighted in reverse video, the flight plan updated to

reflect the new destination waypoint. All waypoints behind

the new "From" waypoint are removed from the flight plan,

which must be manually activated to become the new active

flight plan.

The subroutine WAYPOINT is called to actually perform

the waypoint insertion. Checks are made prior to calling

WAYPOINT to identify the situations mentioned above. When

the waypoint is inserted within an existing route function

the procedure SPLIT is called to break the route function

at the selected waypoint. The insertion is then made

between the two new route function pieces.

GLOBAL REFERENCES:

VARIABLES

ACTCNT ERCODE* MODCNT PMODE TOWPT

ARRAYS

AIRPTS ENTRY RTE CNT

RECORD ARRAYS

RTE MOD WPT ACT WPT MOD

FUNCTIONS AND SUBROUTINES

BOUNDS PAD NAME RTE WPT SPLIT TRIM WPTS WAYPOINT WPT ADDR

WPT ID



-158-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

ALTX
LEGS.FOR
SLOW
FLT_TYPE_INP, LINK_EA, NMBRS, PFINP
ALT = ALTX(TEXT, COUNT)

PURPOSE:

To decode altitude entries.

DESCRIPTION:

This function evaluates an ASCII numeric string which

represents an altitude. Note that values entered with

three or less digits are assumed to be flight levels. Any
value greater than 18,000 feet must not have non-zero tens

or ones digits since it will be displayed as a flight level.

The CDU error code value may be set to reflect an "OUT OF

RANGE" or "BAD FORMAT" error. Out of range errors ocuur

when the value is not between 0 and 40,000 feet.

GLOBAL REFERENCES:

VARIABLES

ERCODE

FUNCTIONS AND SUBROUTINES

FLTVAL



-159-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:

CALLING SEQUENCE:

BOUNDS
LEGS.FOR
SLOW
ADD PLAN, ADD WPT, HLD IN, KILL WPT,
LINK_PD, MERGE, NEXT_WPT, TRIM WPTS, RTE
CALL BOUNDS(INDEX, IN_OFS,OUT__0FS,STEP)

PURPOSE:

To find entry/exit waypoint offsets.

DESCRIPTION:

This subroutine is called to compute the byte offsets, from

the start of a route function defined in the route buffer, of

the entry and exit waypoint pointers (see section 1.5.1.1 for

database formats). When one of the waypoints is not defined

a zero is returned as its offset. The number of bytes between

consecutive waypoints in the route function is also returned.

Note that the STEP may be a negative value since airways may

be flown in either direction.

The parameter list for BOUNDS consists of one input and

three output values. The first is the index into the route

buffer of the chosen route function. The output parameters

are the entry waypoint offset, exit waypoint offset, and

waypoint separation respectively.

GLOBAL REFERENCES:

RECORD ARRAYS

RTE MOD

FUNCTIONS AND SUBROUTINES

ENTRY WPT



-160-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

DSP WPTS
LEGS.FOR
SLOW
LEGS
CALL DSP WPTS(PAGE ID)

m

PURPOSE:

To create CDU display data for the LEGS page.

DESCRIPTION:

This subroutine is called to update the CDU display

screen with the information pertinent to the "LEGS" page

of the CDU. The entire screen is updated every six

consecutive calls to this procedure. During the first call

of the cycle the title line and fixed labels are generated.

On subsequent calls the waypoint information for one of the

five available slots on the screen is updated.

Waypoint information is shown on CDU line pairs starting

with #2/#3 and ending with #10/#11. Three different things

can occupy a line pair. The lines are blanked when finished

with waypoint buffer elements. A route discontinuity marker

is shown for positions which correspond to a break in the

flight plan. Lines that show waypoint data have the way-

point name, speed, altitude, inbound bearing, and inbound

leg distance. Other information appears with the waypoint

data at certain times. The "<CTR>" bug is shown on the

map center waypoint during Plan mode. The waypoint radius

override symbol "R" is placed on waypoints which have a

manually entered turn radius. The waypoints which were

assigned a zero turn radius because of bad flight plan

geometery are indicated by the "*" symbol. When the

displayed waypoint is the "To" waypoint of the active

flight plan the name is shown in reverse video and the

inbound distance is from the airplane, not the previous

waypoint.

Note that the altitude and speed fields may be dashed

when their respective constraints are undefined. When

shown, the values may be either small or large font

depending on the constraint type. The description for

the module XLAT RTE discusses constraint types.



-161-

GLOBAL REFERENCES:

VARIABLES
CTR DTOGOFIRST PTR LASTPG MODCNTPAGE PASS* PLANMPMODE
TOWPT

ARRAYS
BOXES

RECORDARRAYS
WPT MOD

FUNCTIONS AND SUBROUTINES
FMTOUTFSTRNGHLD END INBOUNDINTC_END LEG END STEPS TITLE



-162-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

HLD END
LEGS.FOR
SLOW
DSP WPTS
CALL HLD END

PURPOSE:
To create CDU display labels for the LEGS page.

DESCRIPTION:
This procedure updates CDU display lines #Ii and #12

for the HOLD variation of the LEGS page. The "HOLD AT"
query is placed on line #ii. Line #12 contains the
box prompts and "PPOS>" response which may be selected
using either LSK-L6 or LSK-R6.

GLOBAL REFERENCES:

ARRAYS
BOXES

FUNCTIONS AND SUBROUTINES
FMTOUT



-163-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

HLD IN
LEGS.FOR
SLOW
HLD POS, WPT DATA
CALL HLD IN(WPT INDEX)

PURPOSE:
To initiate the processing of a selected hold waypoint.

DESCRIPTION:
This procedure is called when a holding pattern is

requested on the LEGS-HOLDpage. The input parameter is an
index into the waypoint buffer designating the selected way-
point. If the parameter is zero the waypoint buffer is
searched for the name stored on the global CDU entry line,
ENTRY. The procedure HOLD INIT is called to create the
holding pattern waypoints Tn HLDBUF. If the hold waypoint
is part of a route function the route function waypoints
are separated into two pieces by calling the procedure
SPLIT. The holding pattern, which consists of an entry
waypoint and a hold route function, is inserted before the
hold waypoint in the route buffer. The last step is to
automatically signal the CDU executive to perform a page
change to the hold page display.

GLOBAL REFERENCES:

VARIABLES
ERCODE* HLD WPT* MODCNTPGRQST* START

RECORDARRAYS
RTE MOD* WPT MOD

FUNCTIONSAND SUBROUTINES
BOUNDSHOLD INIT OPEN PAD NAMERTE WPT SPLIT WPT ADDR



-164-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

HLD POS
LEGS.FOR
SLOW
LEGS
CALL HLD POS

PURPOSE:
To create a holding pattern at present position.

DESCRIPTION:
This subroutine inserts a holding pattern about the

airplane's present position on the flight plan. A "PPOS"
entry is simulated to create the "hold waypoint" in the
route buffer by calling ADD WPT. The route discontinuity
generated from the call is removed and aircraft altitude
and ground speed are set up as constraints. A new waypoint
buffer is created by calling XLAT RTE which is used when
HLD IN is called to create the holding pattern at the new
PPOS waypoint.

GLOBAL REFERENCES:

VARIABLES
ALTCOR ERCODE* GS PMODESTRING* TOWPT

ARRAYS
CONBUF* ENTRY*

RECORDARRAYS
RTE MOD* WPT MOD

FUNCTIONS AND SUBROUTINES
ADD WPT DEMODEFIND EMPTYHLD IN KILL XLAT RTE



-165-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

INBOUND
LEGS.FOR
SLOW
DSP WPTS
CALL INBOUND(WPT INDEX, BRG TEXT)

PURPOSE:

To generate bearing text for LEGS display.

DESCRIPTION:

This subroutine creates ASCII text for display in the

inbound bearing field of the LEGS page. The created

character string will have "TURN" for outbound DMA way-

points. Other type will have a number, up to three digits,

with a degree symbol. Note that the bearing saved in the

waypoint buffer for DMA inbound waypoints is perpendicular

to the actual inbound bearing.

GLOBAL REFERENCES:

RECORD ARRAYS

WPT M0D

FUNCTIONS AND SUBROUTINES

ANGL FSTRNG MTH$SIGN



-166-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

INTC END
LEGS.FOR
SLOW
DSP WPTS
CALL INTC END

PURPOSE:
To create CDU display labels for the LEGS page.

DESCRIPTION:
This procedure updates lines #ii and #12 of the CDU

display screen when the DIR/INTC version of the LEGS
page is shown. Two distinct formats are used for this
page depending on the status of the global flag INTCF.
This happens because the DIR/INTC page requires a user
response after the initial DIR/INTC selection. The
normal display shows the "direct to" and "intercept leg"
prompts. When the intercept leg choice is selected
the lines are updated with the intercept course prompt.

GLOBAL REFERENCES:

VARIABLES

INTCF

ARRAYS

BOXES DASHES

FUNCTIONS AND SUBROUTINES

FMTOUT



-167-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

KILL WPT
LEGS?FOR
SLOW
WPTDATA
CALL KILL WPT(WPTINDEX)

PURPOSE:
To remove a waypoint from the flight plan.

DESCRIPTION:
This subroutine removes a waypoint from the flight plan

by modifying the route buffer. When the waypoint is not
part of a route function it is simply replaced by a route
discontinuity marker. Otherwise the route function which
contains the waypoint must be split into two pieces that
contain the preceeding and following waypoints.

In the case of the route buffer element being a single
waypoint a test is made on the following route buffer
element. If it is a route function the deleted waypoint was
its entry waypoint. The module NEXT WPT is called to make
the next route function waypoint in sequence the new entry
waypoint. The same tests are made when the exit waypoint of

a route function is deleted. The waypoint may have also

served as the entry waypoint of a following route function

in which case the NEXT WPT call is required. When the exit

waypoint is deleted the previous waypoint on the flight plan

is used as the new exit, unless it has an undefined entry

waypoint. A route function with an undefined entry gene-

rates a single waypoint in the waypoint buffer (the exit),

so the exit deletion creates a null route function (undefined

entry and exit). If the route function has been reduced to a

one waypoint route function, having the same entry and exit

points, the route function is deleted and the entry waypoint

remains followed by a route discontinuity. All other cases

of removing a route function waypoint are handled by the

procedure SPLIT.

GLOBAL REFERENCES:

VARIABLES

ERCODE* MODCNT

ARRAYS

RTE CNT

RECORD ARRAYS

RTE MOD* WPT MOD

FUNCTIONS AND SUBROUTINES

BOUNDS BREAK NEXT WPT OPEN RTE WPT SPLIT WPT ADDR



-168-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

LEGS
LEGS.FOR
SLOW
HLD MGR, INTC MGR, LEG MGR
CALL LEGS(PAGE ID)

PURPOSE:
To serve as the LEGS page executive module.

DESCRIPTION:
This procedure is called from the various LEGS format

managers to handle function and data entries, and generate
the data for the CDU LEGS page display. The one input
parameter identifies the calling manager module, which is
used to select the minor variations in the LEGS page format.

The first time the LEGS page is called after a change
from another page format, some initialization is performed.
The LEGS subpage is set to one unless returning from the
LEGS-TIME page. In that case the subpage remains the same
as it was on the LEGS-TIME page. Other LEGS variables are
set to their default values.

A number of independent operations are performed in the

body of the procedure. The following is a sequential list

describing the functions.

If the CDU clearance mode has changed to active, change

from "FROM" format to standard.

Call SET PG to set up LEGS page parameters.

Determine if the Plan Mode LEGS format is to be used. In

this mode the navigation display format is centered at

the waypoint marked with the "<CTR>" bug on the CDU. This

format of the LEGS page is only shown when the NAY display

is in Plan mode and the standard LEGS page is being used.

Note that on the first pass of Plan mode the "<CTR>" bug

is set to the last selected map center waypoint (see the

module description for CDUFST).

Respond to the following function entries.

Advance/Backup to next subpage.

Advance/Backup "<CTR>" bug (Plan mode only).

Calls NEWCTR.

. Change to ROUTE INDEX page (Standard LEGS only).

Hold at PPOS (HOLD page only). Calls HLD_POS.

Reject modified flight plan (standard LEGS only).

Echo waypoint name to scratch pad. Calls WPNAME.

Echo ALT/SPD constraints to scratch pad. Calls

PROG NUM.

Respond to data entries by calling WPT_DATA.

Update display lines by calling DSP_WPTS.



-169-

GLOBAL REFERENCES:

VARIABLES
CTR* DISPST ERCODE*FROMPG*INTCF* LASTPG LATCEN LONCEN
MODCNTPAGE* PASS* PGINIT* PGRQST* PLANMPMODE

ARRAYS
ENTRY* OLDPAGE

RECORDARRAYS
WPT MOD

FUNCTIONSAND SUBROUTINES
DSP WPTSHLD POS NEWCTRPROGNUMREJECT SET PG WPNAME
WPT DATA



-170-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

LEG END
LEGS.FOR
SLOW
DSP WPTS
CALL LEG END

PURPOSE:
To create CDU display labels for the LEGS page.

DESCRIPTION:
This subroutine is called to update lines #ii and #12

of the CDU display screen when in the standard LEGS format.
The reference time of arrival and RTA waypoint name are
shown in the middle of lines #Ii and #12 when defined. The
prompts "<INDEX" and "ERASE>" are placed on the outside of
line #12 to identify the use of LSK-L6 and LSK-R6. The
erase prompt is only shown during the MODCDU clearance
mode.

GLOBAL REFERENCES:

VARIABLES
PMODERTA INDX RTA TM

RECORDARRAYS
WPT MOD

FUNCTIONS AND SUBROUTINES
FMTOUTFMTTIM



-171-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

LEG MGR
LEGS.FOR
SLOW
CDUEXC
CALL LEG MGR

PURPOSE:
To call the LEGS page module with standard format.

DESCRIPTION:
Since the standard legs format is used by several pages

the main LEGS procedure must be called with a parameter
indicating specific format. When the executive wishes to
activate the standard legs format it calls the procedure
LEG MGRwhich in turn calls LEGS with a parameter value
of _I"

GLOBAL REFERENCES:

FUNCTIONSAND SUBROUTINES
LEGS



-172-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

NEWCTR
LEGS.FOR
SLOW
LEGS
CALL NEWCTR(STEP)

PURPOSE:
To move the "<CTR>" bug on the LEGS page.

DESCRIPTION:
The "<CTR>" bug is moved STEP increments on the display.

Note that STEP may be negative to "step back" or zero to
force the page computation mentioned below. The bug will

wrap around the ends of the flight plan. Also another

STEP is performed when the new placement is on a route

discontinuity. The navigation display format map center

variables are set to the position of the new "<CTR>" way-

point. The last action is the computation of the CDU

LEGS page which contains the "<CTR>" waypoint. This is

performed because the bug may be STEPed off the current

page.

GLOBAL REFERENCES:

VARIABLES

CTR FIRST PTR GDTIME* LATCEN* LONCEN* MODCNT PAGE*

RECORD ARRAYS

WPT MOD



-173-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

PURPOSE:

NEWENTRY
LEGS.FOR
SLOW
NEXT_WPT, SPLIT, TRIM WPTS
CALL NEW_ENTRY(RTE_PTR,WPTADR,

RTE_OFF, EXIT OFF)

TO define a new route function entry waypoint.

DESCRIPTION:
This module sets up a new route function entry waypoint.

The route buffer index for the new entry waypoint is passed
as RTE PTR. The waypoint's database address and route
offset--are also provided from the parameter list. The
last paramter in the list is the offset of the exit way-
point.

A check is made to determine if the new route entry
waypoint is the same as the route exit waypoint. If so,
the route function is removed to leave the entry waypoint
only. Any waypoint constraints (ALT/SPD/RAD) are extracted
from the constraint buffer and assigned to the new waypoint.

GLOBAL REFERENCES:

RECORDARRAYS
RTE MOD*

FUNCTIONS AND SUBROUTINES
KILL TYPE WPT XFER CON



-174-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

NEXT WPT
LEGS.FOR
SLOW
KILL WPT
CALL NEXT WPT(INDEX)

PURPOSE:
To modify a route function when its entry waypoint is

deleted.

DESCRIPTION:
When the entry waypoint of a route function is deleted

a route discontinuity is inserted before the route function
and a new entry waypoint is selected. The new entry is
set up by a call to NEWENTRY.

When the route functTon does not have an exit waypoint
defined, its definition only creates one waypoint, the entry,
in the waypoint buffer. When the entry waypoint is deleted
the route function is null, having neither an entry nor an
exit waypoint.

GLOBAL REFERENCES:

RECORDARRAYS
RTE MOD

FUNCTIONS AND SUBROUTINES
BOUNDSBREAK GET LONG KILL NEWENTRY OPEN



-175-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

NMBRS
LEGS.FOR
SLOW
LEGS
CALL NMBRS(WPT INDEX)

PURPOSE:
To decode constraint data entries for the CDU LEGS page.

DESCRIPTION:
This module is called to decode the numeric constraint

value input for the waypoint indicated by the input
parameter WPT INDEX.

The data may be either speed, altitude, or turn radius
information. Speed and altitude values may be entered on
any display line containing a waypoint name. Turn radius
values may only be assigned to waypoints not used in DMA
turns. The five valid entry formats are shown below. The
"nnn" depicts a one or more character numeric string.

nnn/nnn

nnn

nnn/
/nnn

R/nnn

Speed/Altitude entry

Altitude entry

Speed entry

Altitude entry

Turn radius entry

To delete the manually assigned speed and altitude entries

at a waypoint use the LSKs to direct the DELETE text

from the scratch pad to the chosen waypoint. Entering "R/"

at a particular waypoint removes a manually entered turn
radius.

Note that constraints may not be assigned to holding

pattern waypoints.

GLOBAL REFERENCES:

VARIABLES

ERCODE* INDAT MODCNT

ARRAYS

ENTRY

RECORD ARRAYS

WPT MOD

FUNCTIONS AND SUBROUTINES

ALTX DEL IN FLTVAL KILL CON LIB$MATCHC NEW CON



-176-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

PAD NAME
LEGS.FOR
SLOW
ADD WPT, DIRECT, HLD IN
NAME= PAD NAME()

PURPOSE:
To append blanks to the entered waypoint name.

DESCRIPTION:
PAD NAME returns a five character ASCII string which is

set to the name in the CDU entry line padded with blanks
on the end. If the initial data is longer than five
characters the returned string is "?????".

GLOBAL REFERENCES:

VARIABLES
ECHARS

ARRAYS
ENTRY



-177-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

PROGNUM
LEGS.FOR
SLOW
LEGS
CALL PROGNUM

PURPOSE:
TO echo altitude and speed values to the CDU scratch pad.

DESCRIPTION:
This procedure is called when the LSK adjacent to a way-

point's altitude and speed values is pressed. The values
are echoed to the scratch pad as if manually entered, which
allows their use elsewhere. PROGNUM calls FMTOUTto
perform the actual scratch pad update after the ASCII data
is encoded from the waypoint buffer.

GLOBAL REFERENCES:

VARIABLES
ERCODE*FIRST PTR MODCNTPAGE

ARRAYS
ENTRY

RECORDARRAYS
WPT MOD

FUNCTIONS AND SUBROUTINES
FMTOUT ISTRNG



-178-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

SET PG
LEGS.FOR
SLOW
LEGS, LEG TIME
CALL SET PG(FROMFLAG)

PURPOSE:
To set LEGS page parameters.

DESCRIPTION:
The waypoint buffer index of the waypoint shown on the

first position of LEGS page #i is set. The decision depends
on the current CDU clearance mode and the "From" variation
status. The chart below shows the chosen index.

CLEARANCEMODE VALUE (regular) VALUE ("From")
Active "To" wpt "From" wpt
Modified 2 1
Original 1 1

The number of pages required to show all the waypoints
is also computed by SET PG.

GLOBAL REFERENCES:

VARIABLES
FIRST PTR LASTPG* MODCNTPMODETOWPT



-179-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

SPLIT

LEGS.FOR

SLOW

ADD WPT, HLD_IN, KILL WPT

CALL SPLIT(INDEX, IN, OUT,OFFSET, STEP,FLG)

PURPOSE:

To break a route function into two pieces.

DESCRIPTION:

This procedure is called when operations are performed

on waypoints within route functions defined in the route

buffer. The existing route function must be split into two

pieces at the selected waypoint.

The call list to SPLIT consists of six input parameters.

The first is the index into the route buffer of the selected

route function. The memory offsets to the entry and exit

waypoint pointers are next. The fourth parameter is the

memory offset to the "split" waypoint. The number of bytes

between consecutive route function waypoints is provided

through the fifth parameter. Note that the waypoint step

value may be negative. The last parameter is a boolean

variable used to request the deletion of the "split" way-
point.

A route function is made out of the first piece of the

"split" by inserting a copy of the original route function

in the previous route buffer slot. The exit waypoint of the

new pieces is set to the waypoint one step behind the

"split" waypoint. If the new route function has the same

entry and exit points the copy is not created since the

already defined entry waypoint is sufficient for the first

piece of the split.

If the "split" waypoint is removed, a route discontinuity

replaces the waypoint. In either case a new position in the

route buffer is opened to hold the entry waypoint for the

second part of the "split" route function. When the second

part will contain only one waypoint the new entry waypoint

is all that is needed. In this case the original route

function is removed from the route buffer. The module

NEW_ENTRY is called to set-up the second piece.

GLOBAL REFERENCES:

RECORD ARRAYS

RTE MOD

FUNCTIONS AND SUBROUTINES

BREAK GET LONG NEW ENTRY OPEN



-180-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

STEPS
LEGS.FOR
SLOW
DSP WPTS
CALL STEPS

PURPOSE:
To create CDU display labels for the LEGS page.

DESCRIPTION:
This procedure updates CDU display lines #Ii and #12

for the Plan mode LEGS page. Line #II is completely

dashed. The "step up"/ "step down" prompts are placed

on line #12.

GLOBAL REFERENCES:

ARRAYS

DASHES

FUNCTIONS AND SUBROUTINES

FMTOUT



-181-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

WPNAME
LEGS.FOR
SLOW
LEGS, LEG TIME
CALL WPNAME

PURPOSE:
To echo a waypoint name to the scratch pad line.

DESCRIPTION:
This procedure performs the scratch pad programmimg of

selected waypoint names. When one of the waypoints shown

on the LEGS or LEGS-TIME pages is selected by pressing the

adjacent line select key (LSK), this subroutine is called

to enter the waypoint name into the CDU scratch pad for

use as an entry elsewhere.

Error messages are signaled when a line with a route

discontinuity or not containg a waypoint is selected.

GLOBAL REFERENCES:

VARIABLES

ERCODE* FIRST PTR MODCNT PAGE

ARRAYS

ENTRY

RECORD ARRAYS

WPT MOD

FUNCTIONS AND SUBROUTINES

FMTOUT



-182-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:

CALLING SEQUENCE:

WPT ADDR
LEGS.FOR
SLOW
ADD PLAN, ADD WPT, HLD_IN, KILL CON,
KILL WPT, LINK PD, NEW_CON,TRIM_WPTS

1

ADDRESS = WPT ADDR(WPT NAME)

PURPOSE:

To initiate a database search for a waypoint.

DESCRIPTION:

This procedure is called with the name of a waypoint

from the waypoint buffer. The waypoint must not be a

HOLD waypoint. The actual search is performed by calling

the procedure WPT_ID.

GLOBAL REFERENCES:

VARIABLES

ERCODE* STRING*

ARRAYS

ENTRY*

FUNCTIONS AND SUBROUTINES

RET WPT ID



-183-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

WPT DATA
LEGS.FOR
SLOW
LEGS
CALL WPT_DATA(PAGE_ID, FROM_FLG)

PURPOSE:
To parse CDU data entries for the LEGS page.

DESCRIPTION:
This procedure is called when a data entry is detected

while on the LEGS page. There are two input parameters to
the module. The first is an index indicating which version
of the LEGS page is active (Standard, Hold, Dir/Intc). The
second parameter signals when the "From Waypoint" format is
being used. The following list describes the different valid
data entries.

A request to transfer to the ROUTE INDEX page. The data
on the scratch pad was not intended for the LEGS page so
it is reprogrammed back into the scratch pad for use by
the ROUTE INDEX page. (Standard format only)

Create a provisional holding pattern by calling HLD IN.
(Hold format only)•

• Generate a "direct to" leg by calling DIRECT. (DIR/INTC
format only).

Generate a "bearing intercept" leg by calling INTERCEPT
or DIRECT depending on status of entries. (DIR/INTC
format only).

Parse constraint entries by calling NMBRS.

Delete flight plan waypoint by calling KILL WPT.

Insert flight plan waypoint by calling ADD WPT.

After any flight plan modifications which did not set an
error condition, the module DEMODEis called to generate
the new "MOD" waypoint buffer.

GLOBAL REFERENCES:

VARIABLES
ERCODE* FIRST PTR INTCF* PAGE PGRQST*

ARRAYS
ENTRY

FUNCTIONSAND SUBROUTINES
ADD WPT DEL IN DEMODEDIRECT HLD IN INTERCEPT KILL WPT
NMBRSREPROG





-185-

Section 6.3.5 THE LEGS TIME PAGE

This page is used to select the Reference Time of
Arrival (RTA) waypoint. The page is accessed through
the ROUTE INDEX page. The flight plan waypoints appear
on the left side of the display pages followed by the
defined ground speed constraint and the assigned arrival
time. When a RTA waypoint has not been selected the
arrival time fields contain dashes. To designate a RTA
waypoint a time is keyed on the scratch pad line and
entered at the desired waypoint with one of the LSKs on

the right hand side of the CDU display. The format for

the time entry is "HHMM.SS". The ".SS" field is optional.

The line containing the RTA waypoint has the "RTA" symbol

placed on its line.

Note that the current time of day is always displayed

on the bottom of the page for reference. Refer to figure

6.7 for the format of the LEGS TIME page.

The remainder of this section provides the descriptions

of the four LEGS TIME modules which reside on the file

LEG TIME.FOR.

L_j_._INTENTIONALLY BLAIW

P;_qECEDI_G P_£ BLANK NOT F..MED





_m

El

_mm

ACT RTE LEGS TIME

WFBBB Gs 1 9o

WFBBC Gs 1 5o

WFBBD Gs 15o

WFBBE Gs 1 so

GMT
< I NDE X

RTA

1038' 47

1/1

1102'52

1105"00

110538

1107:14

m

mm

m_m

w
L--

The Legs Time Page

(figure 6.7)

IP._eF_/___ .... JN'_NTIONALLY BLAI_{





-189-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

DSP TIME

LEG TIME.FOR

SLOW

LEG TIME

CALL DSP TIME

PURPOSE:

TO create data for the LEGS TIME CDU screen.

DESCRIPTION:

This subroutine causes the CDU display to show data

pertinent to the LEGS TIME format. The screen is com-

pletely refreshed every six calls to this module. On the

first call of the cycle the title line and prompt text are

output. On calls #2 through #6 the five lines that show

waypoint information are updated.

Data for the following items is created on the first

call of the cycle. The data is moved to the CDU display

buffer via calls to FMTOUT.

Call TITLE to generate the title line.

Encode the current time of day by calling FMTTIM.

Place the "<INDEX" prompt to the left of line #12.

When a modified flight plan exists place the "ERASE>"

prompt on the right of line #12.

The module SET PG defines which waypoint will appear at the

top of page #I? The remaining flight plan waypoints are

placed sequentially on display lines, five per page. Enough

LEGS TIME pages are maintained to account for all the way-

points. The following three items may be placed on the

waypoint lines of the display page.

• A blank line for slots past the last defined waypoint.

A "RTE DSC" symbol in reverse video for route discon-

tinuities found in the waypoint buffer.

The waypoint name, ground speed constraint, and assigned
arrival time.

GLOBAL REFERENCES:

VARIABLES

FIRST PTR LASTPG MODCNT PAGE PASS* PMODE RTA INDX TIME

ARRAYS

DASHES

RECORD ARRAYS

WPT MOD

FUNCTIONS AND SUBROUTINES

FMTOUT FMTTIM FSTRNG TITLE

ImAi_E /._..___ I_T_,_T'F))J'_tLYBEAM pRECEDING PAGE BLANK NOT F)LMED



-190-

MODULENAME:
FILE NA/ME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

ECHOTIME
LEG TIME.FOR
SLOW
LEG TIME
CALL ECHOTIME

PURPOSE:
To echo selected arrival times to the CDU scratch pad.

DESCRIPTION:
This procedure is called when the arrival time at a

particular waypoint is selected for insertion into the
scratch pad line. The time value is encoded in place as
if manually enter from the keyboard. An error code is
signaled when the LSK adjacent to a route discontinuity
is selected.

GLOBAL REFERENCES:

VARIABLES
ERCODE* FIRST PTR MODCNTPAGERTA WPT

ARRAYS
ENTRY

RECORDARRAYS
WPT MOD

FUNCTIONS AND SUBROUTINES
FMTOUTFMTTIM



-191-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

LEG TIME
LEG TIME.FOR
SLOW
CDUEXC
CALL LEG TIME

PURPOSE:
To serve as the LEGS TIME page executive.

DESCRIPTION:
This procedure is the main routine for the LEGS TIME page

of the CDU. When CDU keyboard entries are made either an
inline action is made or the appropriate handler is called.

After checking inputs the CDU screen refresh module is

called.

The first time LEG TIME is called, upon transfer from a

different CDU page format, some initialization occurs. The

LEGS TIME subpage is set to one, unless transfering from

the LEGS page. The same subpage is used as was on the LEGS

page to provide agreement between the waypoints seen when

transfering between the pages.

Page and subpage change requests are handled inline by

LEG TIME. Other entries are handled by special procedures.

The--following list describes the types of entries and the

called procedure.

Reject modified flight plan. REJECT

Echo waypoint name to scratch pad. WPNAME

Echo arrival time to the scratch pad. ECHO TIME

Decode and process arrival time entries. TIME IN

GLOBAL REFERENCES:

VARIABLES

ERCODE* LASTPG PAGE* PASS* PGINIT* PGRQST* PMODE

ARRAYS

ENTRY* OLDPAGE

FUNCTIONS AND SUBROUTINES

DSP TIME ECHO TIME REJECT SET PG TIME IN WPNAME



-192-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

TIME IN
LEG TIME.FOR
SLOW
LEG TIME
CALL TIME IN

PURPOSE:
To decode and process arrival time entries.

DESCRIPTION:
This procedure handles data entries on the LEGS TIME

page of the CDU. The normal data entry consists of an
arrival time entered at a waypoint using one of the upper
five LSKs on the right hand side of the display screen.
"DELETE" may also be entered adjacent to the RTA waypoint
to remove all arrival times from the flight plan. The
only other valid data entries are actually function entries
that were made when data happened to be on the scratch pad
line (the two page change commands). When this occurs the
data is reprogrammed to the scratch pad for use by sub-
sequent CDU pages.

Note that when an entered time is more than a half day
earlier than the current time of day, the entered value
is assumed to fall into the following day.

GLOBAL REFERENCES:

VARIABLES
ERCODE* FIRST PTR LASTPG* MODCNTPAGEPGRQST* RTA INDX*
RTA TM* RTA WPT* TIME

ARRAYS
ENTRY

RECORDARRAYS
WPT MOD

FUNCTIONS AND SUBROUTINES
DEL IN DEMODEREPROGTIMVAL



-193-

Section 6.3.6 THE ROUTEPAGE

The ROUTEpage is used for the creation and modifi-
cation of aircraft flight plans. An origin and destination
airfield must be chosen before any flight plan information
is entered. Page #I of the ROUTE page is used to choose

airfields. The takeoff runway and company route may option-

ally be selected on page #i also. The remainder of page #i

and all following pages contain the route function and

waypoint names comprising the flight plan. The various

route elements may be entered and deleted from the ROUTE

page, however no waypoint constraint data may be entered.

As many route pages as needed to hold all the desired route

elements will automatically be maintained. The current page

and last page are always displayed on the title line in the

form "<current>/<last>".

The remaining pages of this section contain pictures of

a typical route page and are followed by descriptions of the
34 modules contained in the file ROUTE.FOR.





-195-

MOD

m

I

ROUTE 1/2

ORIGIN

KLFI
CO ROUTE

DEST

KWA L

RUNWAY

O8
VIA

DIRECT
TO

BRO8X

DIRECT DPO8X

<INDEX ERASE>

The Route Page

(figure 6.8)

B/MIlE /(/_' f_I'rr_m0NALLY BIAMI PR_CEDii_!G PAGE BLANK NOT FILMED





-197-

MOD ROUTE

VIA

DIRECT

ISL08

JJmNmm

ML3CCV

2/2

TO
ISLAD

SCHOL

IIIII

SWL

RTE DSC

<INDEX ERASE>

The Route Page

(figure 6.9)

pRI?CEnl_¢G o,_GE PLANK NOT FILMED





-199-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

ACT EXIT

ROUTE.FOR

SLOW

DATA IN

CALL ACT EXIT(INDEX)

PURPOSE:

To verify "dead waypoint" errors.

DESCRIPTION:

Dead waypoint errors occur when the pilot attempts

to delete overflown waypoints from the ROUTE page. The

module signals a dead waypoint situation when a DELETE

is placed at one of the route elements. However a dead

waypoint situation is flagged when the exit waypoint

of a route function that contains the active "To" way-

point is deleted. This procedure checks for that

special case and allows the exit waypoint deletion

instead of setting the error code.

GLOBAL REFERENCES:

VARIABLES

ACTCNT ERCODE* TOWPT

RECORD ARRAYS

RTE ACT RTE MOD* WPT ACT



-2O0-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

AIRPORT
ROUTE.FOR
SLOW
DATA IN, WPT ID
AIRPORT(COUNT, ADDRESS)

PURPOSE:
To search the database for the entered airfield.

DESCRIPTION:
The airfield name in the CDU entry buffer is used to

search the navigation database (AADCOM). The address
is returned when found, otherwise a zero is returned.

Two different error code values can be used when
no airfield is found. When the entered text is not the
proper format for an airfield the "BAD DATA FORMAT" code
is returned. When not found in the database the "NOT
FOUND IN MEMORY"is used. Proper airfield format is
a four character name starting with the letter "K".

GLOBAL REFERENCES:

VARIABLES
ERCODE*

ARRAYS
ENTRY

FUNCTIONSAND SUBROUTINES
LUARP



-201-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:

CALLING SEQUENCE:

BREAK
ROUTE.FOR
SLOW
DATA_IN, DEL_RTE, DIRECT, GROUP,
INTC_WPTS, KILL_WPT, NEXT_WPT, SPLIT
CALL BREAK(INDEX)

PURPOSE:
To create a route dicontinuity.

DESCRIPTION:
The route buffer element at route buffer location

"INDEX" is made a route discontinuity. This is done by
clearing the TYPE, ADDR, CPTR, and EXIT modes of that
buffer location.

GLOBAL REFERENCES:

RECORDARRAYS
RTE MOD*



-202-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

CLEAN PPT
ROUTE.FOR
SLOW
MAKE WPT
CALL CLEAN PPT

PURPOSE:
TO search for free pilot waypoint buffer locations.

DESCRIPTION:
This procedure is called when all twenty of the pilot

waypoint buffer (PPT WPT) positions are defined. A
search is made for the use of each definition in the
provisional and active route buffers. Those definitions
no longer used are marked as available. If no positions
are found an error code is returned.

GLOBAL REFERENCES:

VARIABLES
ERCODE*

ARRAYS
RTE CNT

RECORDARRAYS
PPT WPT RTE ACT RTE MOD

FUNCTIONS AND SUBROUTINES
GET CHAR



-203-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

COMPANY
ROUTE.FOR
SLOW
DATA IN
CALL COMPANY(NAMELENGTH)

PURPOSE:
To insert a company route into the route buffer.

DESCRIPTION:
This procedure is called when a company route is entered

on the ROUTEpage of the CDU. The length parameter passed
is the number of characters in the global buffer, ENTRY,
which contains the company route name.

Once the company route is found in the navigation data-
base the default origin and destination airfields are set.
Runway data for these airfields is invalidated. When an
origin airfield has already been entered on the CDU the
default value must match or the company route entry is
rejected. The company route SID and STAR pointers are
tested for non-zero values. If supplied, the departure and
arrival route functions are placed in the route buffer by
calling GROUP. The company route's list of waypoints are
inserted into the route buffer after the SID and before the
STAR.

GLOBAL REFERENCES:

VARIABLES
ADDRESSERCODE*

ARRAYS
AIRPTS* ENTRY RTE CNT

RECORDARRAYS
RTE MOD*

FUNCTIONS AND SUBROUTINES
GET LONG GROUPLURTE TYPE WPT



-204-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

DATA IN
ROUTE.FOR
SLOW
ROUTE
CALL DATA IN

PURPOSE:
To parse route page keyboard data entries.

DESCRIPTION:
This subroutine is called to parse keyboard data entries.

Function entries are handled by the main procedure ROUTEor
the module ECHO. These data entries are the names of route
functions, waypoints, and runways. If route page #I is being
shown there are four entries which are made at fixed
positions on the screen. This includes the origin and
destination airfields, origin runway, and company route.
The adjacent line select keys (LSKs) are used to modify these
items. All other entries are waypoints, route functions, or
'DELETE' entries which are enterd at various display lines
via the LSKs.

First, DATA IN checks for fixed position inputs. These
are the originTdestination airfields, company route, and
takeoff runway. When a valid origin airfield is entered,
the flight plan is initialized to be empty. When the
destination airfield is entered any previously existing
touchdown waypoints are removed from the plan. When a
company route is entered the entire flight plan is setup
by a call to the module COMPANY. Valid takeoff runways
elicit a call to ORGRWYto generate the required runway
waypoints.

The #6 LSK on the left hand side (LSK-L6) is used to
change to the ROUTE INDEX page. Data on the scratch pad
when this LSK is selected is not intended as a data entry.
DATA IN detects this situation and responds by calling
REPROGto restore the data to the scratch pad, and then
signals the page change request.

The processing of waypoints, route functions, and
DELETE entries occurs next. Note that all route functions
are always entered with left LSKs and waypoints with right
LSKs. DELETE entries are made on either side. The LSK
selected and the current ROUTEpage number are used to
identify a particular element in the route buffer. The
element may already contain an entry or may be the next
available spot at the end of the buffer. Note that route
buffer elements corresponding to waypoints prior to the
current "To" waypoint on an active flight plan may not
be modified. Also the position imediately following a
route function with an undefined exit waypoint may not
be changed.



-205-

A left LSK is used when a route function or DELETE is
entered. The DELETE entry will erase the route function
and replace it with a route discontinuity marker, unless
the deleted item was the last in the buffer. When a
route function is entered, RTE ID is called to search the
system database for the name and to identify its type
(SID, STAR, ...). Two types of route function entries are
possible. If an individual route function name was entered,
RTE ID set OFFSET to zero, the route function is made part
of the flight plan by calling GROUP. An intercept route
entry of the form BEARING/ROUTENAME/EXIT WAYPOINT is also
processed by RTE ID. In this situation the offset of the
exit waypoint is returned to this procedure in the global
variable OFFSET. The procedure RTE INTC is called instead
of GROUPfor the insertion of the intercept waypoint and
the route function waypoints.

A right LSK is used when a waypoint or DELETE entry is
made. DELETE can either erase the exit waypoint of a route
function or a normal waypoint. Route discontinuity markers
are inserted for DELETE entries unless the erased item was

the last in the buffer. When a waypoint name is entered,

WPT ID is called to search the system database and identify

the waypoint type (GRP, NAVAID, ...). If found the waypoint

information is inserted into the route buffer by calling
WAYPOINT.

GLOBAL REFERENCES:

VARIABLES

ERCODE* PAGE PGRQST* PMODE PRMT TOWPT

ARRAYS

AIRPTS ENTRY RTE CNT*

RECORD ARRAYS

RTE MOD WPT ACT

FUNCTIONS AND SUBROUTINES

ACT EXIT AIRPORT BREAK COMPANY DEL IN DEL RTE EXIT GROUP

INIT PLAN LURWY OPEN ORG RWY REMOVE REPROG RTE ID RTE INTC

WAYPOINT WPT ID -- -- --



-206-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:

CALLING SEQUENCE:

DEL IN
ROUTE.FOR
SLOW
ACTION, DATA_IN, DA_INPUT, FIX_INFO,
FIX INP, FLT TYPE_INP, HOLD INPUT,
IDENT, INDX_INPUT, INITUP, NAV INPUT,
NMBRS, PFINP, SUBNAV_INPUT, TIME_IN,
TKOFFINP, WPT DATA
BOOLEAN=DELIN()

PURPOSE:
To identify DELETE entries.

DESCRIPTION:
The CDU entry line buffer ENTRY is tested for "DELETE".

GLOBAL REFERENCES:

VARIABLES
STRING

ARRAYS
ENTRY



-207-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

DEL RTE
ROUTE.FOR
SLOW
DATAIN, MODIFY
CALL DEL RTE(INDEX)

PURPOSE:
To remove a route function from the route buffer.

DESCRIPTION:
This procedure is called with a route buffer index

designating a route function which is to be removed from
the route buffer. If it is the last route element in
the buffer it is simply removed. Otherwise a route
discontinuity is created in its place.

Note that the module XLAT RTE handles the clearing
of the destination runway address save in AIRPTS.
Therefore this module does not have to determine if the
deleted route function was an approach.

GLOBAL REFERENCES:

ARRAYS
RTE CNT*

FUNCTIONS AND SUBROUTINES
BREAK



-208-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

DSC CHECK
ROUTE.FOR
SLOW
DEMODE
CALL DSC CHECK

PURPOSE:
To perform maintainance on the route buffer.

DESCRIPTION:
Each time changes are made to the route buffer DSC CHECK is

called to determine if the route buffer manipulations--have
produced route discontinuities which either appear at the
end of the buffer or immediately following another discon-
tinuity. Also checks are made to determine if the same
waypoint is placed in consecutive buffer locations. When
any of these situations occur, the excess elements are
removed from the buffer.

GLOBAL REFERENCES:

ARRAYS
RTE CNT*

RECORDARRAYS
RTE MOD

FUNCTIONS AND SUBROUTINES
GET LONG KILL



-209-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

ECHO
ROUTE.FOR
SLOW
ROUTE
CALL ECHO

PURPOSE:
To echo route element names to the scratch pad.

DESCRIPTION:
LSK's are used on the ROUTEpage to select particular

route elements for use in the scratch pad. In this form
the LSK is used as a function entry since no scratch pad
data is entered prior to selection. The route function
name is programmed into the scratch pad line as if the
individual characters were manually entered.

The PROGSCR routine is called to echo the names of
origin or destination airfields, direct waypoints, exit
waypoints, and route functions to the scratch pad. The
type byte stored in the route buffer is used to determine
how many characters to echo for the various kinds of
waypoints.

GLOBAL REFERENCES:

VARIABLES
ERCODE* PAGE

ARRAYS
AIRPTS ENTRY RTE CNT

RECORDARRAYS
RTE MOD

FUNCTIONSAND SUBROUTINES
GET CHAR GET LONG PROGSCR TYPE WPT



-210-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

ENTRY WPT
ROUTE?FOR
SLOW
BOUNDS, GROUP, SEQUENCE
OFFSET = ENTRY WPT(INDEX,ADDR,TYPE)

PURPOSE:
To determine validity of a route buffer entry waypoint.

DESCRIPTION:
This function is used to determine if a waypoint stored

in the route buffer can be used as the entry waypoint of a
route function. The offset from the start of the route
function to the waypoint pointer is returned when the way-
point is valid, otherwise zero is returned. See section
1.5.1.1 for detatils of the database format for route
function data.

There are three input parameters to ENTRY WPT. The first
is the index into the route buffer of the element to be
tested as an entry waypoint. Note that the selected route
buffer element may be either a waypoint or a route function.
If it is a route function the exit waypoint is used for the
validity test. When this situation occurs, two route functions
share the same waypoint as a joint exit/entry. The remaining
parameters are the address and type of the route function
stored in the navigation database.

GLOBAL REFERENCES:

RECORDARRAYS
RTE MOD

FUNCTIONS AND SUBROUTINES
GET LONG RTE WPT



-211-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

EXIT
ROUTE.FOR
SLOW
DATA IN, EXECUTEr ROUTE, UPDATE, WAYPOINT
BOOLEAN= EXIT(INDEX)

PURPOSE:

To check exit waypoint status.

DESCRIPTION:

The route element defined in the route buffer, location

INDEX, is tested to determine if it is a route function

with an undefined exit waypoint. If it is the function

returns the boolean value FALSE. Otherwise the return

value is TRUE.

GLOBAL REFERENCES:

RECORD ARRAYS

RTE MOD



-212-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

EXIT WPT
ROUTE.FOR
SLOW
GROUP
OFFSET = EXIT WPT(INDEX,ADDR,TYPE)

PURPOSE:
To determine validity of a route buffer exit waypoint.

DESCRIPTION:
This function is used to determine if a waypoint stored

in the route buffer can be used as the exit waypoint of a
route function. The offset from the start of the route
function to the waypoint pointer is returned when the way-
point is valid, otherwise zero is returned. See section
1.5.1.1 for detatils of the database format for route
function data.

There are three input parameters to ENTRY WPT. The first

is the index into the route buffer of the ele--ment to be

tested as an entry waypoint. If this index points to an

unused buffer location or the element at the location is a

route function, the invalid status is immediately returned.

The remaining parameters are the address and type of the

route function stored in the navigation database. The

input data is passed on to the function RTE WPT to check

for validity as a route waypoint.

GLOBAL REFERENCES:

ARRAYS

RTE CNT

RECORD ARRAYS

RTE MOD

FUNCTIONS AND SUBROUTINES

RTE WPT



-213-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

FIND PPT
ROUTE.FOR
SLOW
PROCESS_GRP,UPDATE_POS, WPT_ID
INDEX = FIND PPT(NAME)

PURPOSE:
To locate a specific pilot defined waypoint.

DESCRIPTION:
This function is called with the five character name

of a pilot waypoint. The pilot waypoint buffer (PPT WPT)
is searched and the index into the structure is returned.
A zero index value is returned when not found.

GLOBAL REFERENCES:

RECORDARRAYS
PPT WPT



-214-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

FIND RTE

ROUTE.FOR

SLOW

RTE ID

ER_CODE = FIND_RTE (NAME, CNT, _dgDR, TYPE)

PURPOSE:

To locate a route function in the navigation database.

DESCRIPTION:

This function searches the system database for the

route function whose name and length are supplied as the

first two parameters in the calling sequence. The address

and route function type are returned through the parameter

list. The value returned through the function reference is

a CDU error code. If the value is zero, no errors were

detected.

An airway name consists of two to six letters, start-

ing with "J" or "V". SIDs, STARs, and APPROACHES have

five or six characters with no special starting letter.

Non-airway route functions are associated with particular
airfields. The module LUSID is called to search _u_DCOM for

any SID/STAR/APPROACH at the destination airfield first.

Searching is complete if the item was found in the database

and the type of the located route function is not a SID,

since departures from the destination airfield may not be

referenced. Searching continues using the origin airfield

as reference. This time the only route function type
considered a valid find is the SID.

GLOBAL REFERENCES:

ARRAYS

AIRPTS

FUNCTIONS AND SUBROUTINES

LUJET LUSID LUVIC



-215-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

GROUP
ROUTE.FOR
SLOW
COMPANY,DATA IN, MODIFY, RT NEW
CALL GROUP(ADDR,TYPE, INDEX, APPEND)

PURPOSE:
To insert a route function into the route buffer.

DESCRIPTION:
This procedure enters a group of waypoints (route

function) into the route buffer. Processing varies for
the different route function types. In append mode the
new route function is simply added to the end of the
route buffer. Otherwise an insertion, possibly with the
creation of route discontinuities, into the buffer is
performed. When insertion occurs the following route
elements, including the one at the selected position,
are moved ahead in the route buffer.

The parameter list in the call consists of four input
parameters. The first is the database address of the
entered route function. Next is the route function type
code (defined in CDU.INC). The INDEX parameter points to
the destination slot in the route buffer for the entered
route function. The last parameter is a flag indicating
when the append mode is active.

The previous route buffer element may be used as an
entry waypoint into the entered route function. The
function ENTRY WPT is used to set the variable ENTRY OFS
to the offset within the route function data to the
entry waypoint. If the previous element cannot be used
as an entry waypoint, ENTRY OFS is zeroed. The following
chart describes how the different route function types
are handled by GROUP.

APPROACHES: When an entry waypoint does not already exist
in the route buffer, the first waypoint on the approach
is used as a default. The last waypoint of the approach
is always used as the exit waypoint, which automatically
terminates the flight plan as the touchdown runway. No
route discontinuities are generated from approach entries.

SID/STAR: The entry waypoint defaults to the first of
the route function unless a valid entry waypoint was
found in the route buffer. The following route buffer
element is checked for validity as an exit waypoint
for the entered route function. If it cannot be used
the default exit waypoint is the last waypoint on the

route function. No route discontinuities are generated

from SID/STAR entries.



-216-

AIRWAYS: An entry waypoint must have been explicitly
defined as the previous route element or the route
function entry is rejected. When an airway is inserted
(not appended) into the route buffer a route discon-
tinuity marker is always inserted immediately following
the entered route function. No default exit waypoint
is used and the next route buffer element is not con-
sidered as a possible exit waypoint.

GLOBAL REFERENCES:

VARIABLES
ERCODE*

ARRAYS
AIRPTS* RTE CNT*

RECORDARRAYS
RTE MOD*

FUNCTIONS AND SUBROUTINES
BREAK ENTRY WPT EXIT WPT GET LONGKILL OPEN REMOVETYPE WPT



-217-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

INIT PLAN
ROUTE.FOR
SLOW
DATA IN
CALL INIT PLAN

PURPOSE:
To initialize the flight plan.

DESCRIPTION:
Each time the origin airfield entry is made on the

ROUTEpage of the CDU the flight plan is initialized. A
number of memory locations are cleared or invalidated as
follows.

Company route address is invalidated•
• CDU mode is set to initial clearance.
. 2D/3D/4D guidance modes are invalidated•

MOD & ACT route buffer counts are zeroed•
MOD & ACT hold waypoints are invalidated•
Phase of flight booleans are reset.
Cruise altitude is invalidated•
Origin/destination airfield info is invalidated.

• The pilot waypoint buffer is cleared•
The waypoint constraint buffer is cleared•

GLOBAL REFERENCES:

VARIABLES
CLBCHNG*CRZALT* CRZCHNG*C ADR* DESCHNG*DESCHNGI*
GUID2D* GUID3D* GUID4D* HLD PTR* HLD WPT* PMODE*

ARRAYS
AIRPTS* CONBUFRTE CNT*

RECORDARRAYS
PPT WPT

FUNCTIONSAND SUBROUTINES
CLRBUF



-218-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

INTC WPTS
RTE INTC.FOR
SLOW
RTE INTC
CALL INTC WPTS(LAT, LON,ENTRY,RTE ADR,

RTE_TYP,BUF_PTR,APPEND)

PURPOSE:
TO store route intercept data into the route buffer.

DESCRIPTION:
This module makes the insertions into the provisional

route buffer (RTE MOD) which reflect the route intercept
data generated when the "RTE INTC" option is selected on the
Route page. Four elements are inserted into the route
buffer.

i) A waypoint for the leg intercept point
2) The entry waypoint onto the route
3) The route function
4) A route discontinuity separating the new data from the old

The first two items passed through the calling sequence
are the latitude and longitude of the intercept waypoint.
The next item passed is the offset into the route function
of the route entry waypoint followed by the address and type
of the route function. Next is the index into the route
buffer where the insertion is to be made. The last parameter
is a boolean flag indicating whether the additions are either
inserted within the route buffer or appended onto the end.

The intercept waypoint is created in the Pilot Defined
Waypoint buffer with a call to MAKE WPT. The route function
entry waypoint is saved next, using the passed offset to
fetch the address pointer to the actual waypoint. The
function TYPE WPT is used to determine what type of waypoint
the entry waypoint is. The route function is stored by using
the passed address and type. The global variable OFFSET
already contains the required exit waypoint offset, which
was found when the route intercept entry was initially
parsed. In the case of the Approach type of route function,
the global exit offset is ignored and the last waypoint of
the Approach is used as the exit. Also for an Approach the
destination runway is set and any route buffer elements
past the Approach are removed. The fourth addition to the
route buffer is a route discontinuity marker.



-219-

GLOBAL REFERENCES:

VARIABLES
OFFSET

ARRAYS
AIRPTS* RTE CNT*

RECORDARRAYS
RTE MOD*

FUNCTIONS AND SUBROUTINES
BREAK GET LONG KILL MAKE WPT OPEN TYPE WPT



-220-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

INT LEG

RTE INTC.FOR

SLOW

RTE INTC

DIST = INT_LEG(Xl, YI, X2, Y2, PBRG)

PURPOSE:

TO compute the distance to route function intercept

points.

DESCRIPTION:

This function returns the distance to the intersection

point of a line through the coordinate system origin,

extended at an angle "PBRG", and the line bounded by the

coordinate endpoints (XI,YI;X2,Y2). If no point is found,

a "-i" is returned. The coordinate endpoints and line

bearing are passed in the parameter list. Note that both

lines are treated as infinte length lines extented at their

defined slopes. Once the intersection of the infinite lines

is found, checking is performed to determine if the inter-

section falls within the bounds of both lines. Note that

the line defined by origin and bearing is an infinite line

in the direction of the passed bearing only.

An intersection point exists somewhere on the infinite

lines, as long as they do not have the same slope. The

intersection coordinates are found in one of three ways;

the line through the origin is vertical (infinite slope),

the bounded line is vertical, or neither is vertical. The

methods used for computing the X and Y intersection points
are shown below.

SLOPE = (Y2 - YI) / (X2 - Xl) [slope of bounded line]

Y_INT = Y1 - Xl * SLOPE ["Y" intercept of bounded line]

TANBRG = TAN(90 - PBRG) [adjusted to cartesian angular measure]

Origin line vertical:

X = 0; Y = Y INT

Bounded line vertical:

X = XI; Y = Xl * TANBRG

Neither vertical:

X = Y INT / (TANBRG - SLOPE)
Y = TANBRG * X



-221-

Once the intersection point is found, it is determined
whether the intersection point falls within the bounds of
the actual lines. The function BETWEENchecks if the point
is on the bounded line segment. Since the bearing through
the origin line does not actually extend in the reverse
direction, the angle to the intersect coordinates is com-
puted and compared to the original bearing to see that they
match (are not 180 degrees out of phase).

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
ANGL MTH$ATAND2MTH$SQRTMTHSTAND



-222-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

KILL

ROUTE.FOR

SLOW

BEG RTE, DSC CHECK, GROUP, HLD POS,

HOLD_INPUT, INTC_WPTS, LINK_PDTMERGE,

MODIFY, NEW_ENTRY, NEXT_WPT, REMOVE,
TRIM WPTS

CALL--KILL(INDEX, COUNT)

PURPOSE:

To remove route elements from the route buffer.

DESCRIPTION:

"COUNT" route elements are removed from the route buffer

starting at the location INDEX. The created gap is removed

by shifting trailing elements back over the deleted ones.

GLOBAL REFERENCES:

ARRAYS

RTE CNT*

RECORD ARRAYS

RTE MOD*



-223-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:

CALLING SEQUENCE:

MAKE WPT
ROUTE.FOR
SLOW
DIRECT, FILL_RTE, INTC_WPTS, INTERCEPT,
MODIFY, ORGRWY, WAYPOINT, WPT ID
ADDR=MAKEWPT(LAT,LON,ALT,SPD,N--AME)

PURPOSE:
To create pilot defined waypoints.

DESCRIPTION:
This function is used to create waypoints in the pilot

waypoint buffer (PPT_WPT). The address of the created
waypoint is returned to the caller.

The parameter list defines the characteristics of the
created waypoint. The position is passed as the first two
parameters (latitude & longitude). Altitude and speed
are optional parameters which become default waypoint
constraints. The name parameter may be either a full five
character name or just the three character name prefix.
When the prefix is supplied a unique two digit sequence
number is appended to the name. The CDU entry line which
prompted the creation of the pilot waypoint is saved in
PPT WPT also for reference by the NAV DATA page.

When the pilot waypoint buffer is full, CLEAN PPT is
called to remove waypoint definitions no longer used. If
no space is found an error code is returned.

GLOBAL REFERENCES:

VARIABLES
ERCODESTRING

ARRAYS
ENTRY

RECORDARRAYS
PPT WPT

FUNCTIONSAND SUBROUTINES
CLEAN PPT ISTRNG P LIST



-224-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

MERGE
ROUTE.FOR
SLOW
WAYPOINT
CALL MERGE(WPT_ADR,INDEX, LAST_INDEX)

PURPOSE:
TO merge sections of the route buffer.

DESCRIPTION:

This subroutine is called to determine if the last

entered waypoint appears again further along on the flight

plan. This is interpreted as an attempt, by the pilot, to

eliminate the part of the flight plan in between. When

this situation is detected, the route buffer data in

between the two occurences (including one copy of the

repeat waypoint) is removed from the route buffer.

The address of the entered waypoint is passed as the

first call parameter. Its route buffer postion is

the second parameter and the third is the route buffer

position where searching should be terminated.

When the merge is performed the second copy of the

waypoint is thought to be moved up to a previous position,

removing elements in between. Therefore any waypoint

constraints associated with the original waypoint are

transfered to the new copy by calling XFER CON.

Complications arise when the route buffer elements

examined are route functions. Then the waypoints defined

between, and including, the exit and entry waypoints are

compared to the key waypoint. In this situation the

key waypoint becomes the new entry waypoint for the
tested route function.

GLOBAL REFERENCES:

RECORD ARRAYS

RTE MOD

FUNCTIONS AND SUBROUTINES

BOUNDS KILL RTE WPT SEQUENCE XFER CON



-225-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

NEWPOS
ROUTE.FOR
SLOW
INTERCEPT, ORGRWY, WAYPOINT, WPT ID
CALL NEW_POS(LATI,LONI,BRG, RNG,LA_2,LON2)

PURPOSE:
To compute a position from a defined reference position.

DESCRIPTION:
This procedure uses a reference position (LATI/LONI),

bearing (BRG), and range (RNG) from the parameter list
to compute a new position which is returned through the
parameter list (LAT2/LON2). The Path Definition procedure,
LOCAL_ERAD, is called to find the local feet per degree
values.

GLOBAL REFERENCES:

VARIABLES
LAT FEET LON FEET

FUNCTIONSAND SUBROUTINES
LOCAL ERAD SCOSD



-226-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

OPEN

ROUTE.FOR

SLOW

BEG RTE, DATA_IN, DIRECT, GROUP, HLD_IN,

INTC_WPTS, KILL_WPT, NEXT_WPT, ORG RWY,
SPLIT, WAYPOINT

CALL OPEN(INDEX, SPACES)

PURPOSE:

To create open spaces in the route buffer.

DESCRIPTION:

A number of free positions, indicated by the SPACES

parameter, are open at the route buffer location INDEX.

The subsequent route elements are moved further along in the
route buffer.

GLOBAL REFERENCES:

VARIABLES

ERCODE*

ARRAYS

RTE CNT*

RECORD ARRAYS

RTE MOD*



-227-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

ORGRWY
ROUTE.FOR
SLOW
DATA_IN, MODIFY
CALL ORGRWY(ADDRESS)

PURPOSE:
To insert an origin runway into the route buffer.

DESCRIPTION:
This procedure is called with the address of a runway

in the navigation database. First any existing takeoff
runway waypoints are removed from the flight plan. Two
waypoints are inserted at the start of the route buffer.
The first is placed at the position of the brake release
point on the runway and the second is placed three nautical
miles ahead at an elevation of 1005 feet above the runway
(3 degree ascent).

The two waypoints are actually pilot waypoints created
by calling MAKE WPT. Their names are "BRnnx" and "DPnnx"
where "nn" is the runway number and "x" is the left, right
indicator "L" or "R". If it is the only runway with that
direction at the airfield, the "x" character is shown as
11XII .

GLOBAL REFERENCES:

ARRAYS

AIRPTS*

RECORD ARRAYS

RTE MOD*

FUNCTIONS AND SUBROUTINES

GET CHAR GET REAL MAKE WPT NEW POS OPEN REMOVE



-228-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

PROG SCR

ROUTE.FOR

SLOW

ECHO

CALL PROG SCR(STRING, LENGTH)

PURPOSE:

To program the CDU scratch pad.

DESCRIPTION:

The text passed to this module in the parameter STRING

is programmed into the scratch pad by calling FMTOUT.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES

FMTOUT



-229-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

REMOVE
ROUTE.FOR
SLOW
DATA_IN, GROUP,MODIFY, ORG_RWY,WAYPOINT
CALL REMOVE(RWYCODE)

PURPOSE:
To remove runway waypoints from the flight plan.

DESCRIPTION:
This procedure is called to remove either takeoff or

touch-down runway waypoints from the route buffer. The
runway code parameter selects which type to delete. The
module checks the ".RWY" field of all the waypoints in
route buffer for RWYCODEmatches. The procedure KILL
is called to remove the waypoints.

GLOBAL REFERENCES:

ARRAYS
RTE CNT

RECORDARRAYS
RTE MOD

FUNCTIONS AND SUBROUTINES
KILL



-230-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

ROUTE
ROUTE.FOR
SLOW
SELECT
CALL ROUTE

PURPOSE:
To serve as the ROUTEpage executive procedure.

DESCRIPTION:
This subroutine is the main procedure for the ROUTEpage

software. It performs a number of top-level functions
beginning with first pass initialization and the computation
of a few variables used by other modules. Most keyboard
entries are handled by a call to DATA IN, however simple
keyboard requests such as page changes are performed
inline. A call to the CDU screen update procedure (UPDATE)
is made every time the CDU executive calls ROUTE. This is
done to periodically update lines of the CDU screen even
when no changes have been made.

Two items handled by ROUTE and used by other modules
are the prompt boolean and page count. The line following
the last ROUTEpage entry may have dash prompts to indicate
the next available entry position. The flag PRMT is set
when the prompt is valid. The conditions are as follows.

The flight plan does not end with a touchdown runway.
The last item is either a route function complete
with its exit waypoint or a single waypoint.
origin and destination airfields are defined.

The LASTPG variable is computed as the number of ROUTE
display pages required to show all the route data,
including the prompt text.

GLOBAL REFERENCES:

VARIABLES
ERCODE* LASTPG PAGE* PASS* PGINIT* PGRQST*PMODEPRMT

ARRAYS
AIRPTS ENTRY* RTE CNT

FUNCTIONS AND SUBROUTINES
DATA IN DEMODEECHOEXIT FMTOUTREJECT UPDATE



-231-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

RTE ID
ROUTE.FOR
SLOW
DATA IN RT NEW
CALL RTE ID(COUNT, ADDRESS, TYPE)

PURPOSE:
To identify a route function entry.

DESCRIPTION:
This procedure is called when a route function name is

entered on the CDU. The navigation database is searched to
determine the validity of the entry.

The paramter list contains one input and two output
paramters. The count is the number of characters in the
route function name, which is stored in the global buffer
ENTRY. The route function address and type are returned to
the caller. When the route function is not found in memory
a zero address value is returned.

Two formats for route function entry exist. The first
is the entry of a route function name only. In this
situation the function FIND RTE is called to search the
database for the entered name and the result is immediately
returned to the caller. The second format appears as three
items, separated by slashes as follows.

BEARING/ROUTEFUNCTION NAME/EXIT WAYPOINTNAME

This format is used when a fixed intercept bearing from a
waypoint, already part of the flight plan, onto a route
function is desired. RTE ID parses this entry to separate
the three items. The bearing value is decoded and stored in
the global variable BEARING. The route function and exit
waypoint are then located in the system database and the
offset of the exit is found on the route function. The
route function address and the exit waypoint offset are
returned to the caller through the global variables ADDRESS
and OFFSET respectively.

GLOBAL REFERENCES:

VARIABLES
BEARING ERCODE* INDAT OFFSET*

ARRAYS
ENTRY

FUNCTIONS AND SUBROUTINES
FIND RTE LIB$LOCC OTS$CVT TU L RTE WPT WPT ID



-232-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

RTE INTC
RTE INTC.FOR
SLOW
DATA IN
CODE=RTE_INTC(RTE_ADR,RTE_TYP,PTR,APPEND)

PURPOSE:
To perform the route function intercept computations.

DESCRIPTION:
This procedure is called when the Route Intercept

option is requested on the RTE page. Each leg of the
selected route is tested for an intersection with a radial
drawn from the previous waypoint in the flight plan. More
than one leg may be intersected so the nearest leg is used.
Note that DME turn legs are never chosen.

The following list is a summary of the inputs and out-
puts referenced in RTE INTC. These are accessed both as
calling parameters and global variables.

INPUTS
BEARING
OFFSET
RTE ADR
RTE TYP
BUF PTR
APPEND

Entered magnetic bearing to route
Byte offset in database to exit waypoint
Address of route in database
Type of route
Pointer to insert position in RTE buffer
Append to end of RTE buffer flag

OUTPUTS
RTE MOD Updated provisional route buffer

First the position of the reference waypoint in the
flight plan is fetched. The reference waypoint is the way-
point immediately preceeding the position in the flight plan
where the route function intercept was entered on the RTE
page. The preceeding item in the route buffer may be
another route function. In this case the exit waypoint of
the route function is used as the reference waypoint.

Each leg segment on the selected route function is
processed to determine if an intercept point exists. The
procedure XYPOS is called to find the North and East offsets
(feet) from the reference waypoint to the leg segment way-
points. The function INT LEG is called for each pair to
determine the existance of an intersection from the
reference waypoint at the entered bearing. A "-I" is
returned from INT LEG when no intersection exists. Other-
wise the distance from the reference waypoint to the
intersection position is returned. The distance to the
closest intersection is saved.



-233-

When finished with all waypoints a check is made to
determine if an intersection has been found. If the leg
belongs to an AIRWAY the exit waypoint is used to determine
which direction to go from the intersect waypoint by
selecting one of the leg endpoints. For unidirectional
routes an error is flagged when the entered exit waypoint
would cause the wrong direction to be made.

"NEW POS" is called to compute the position of the
intersect waypoint and INTC WPTS inserts the appropriate
route elements into the route buffer.

GLOBAL REFERENCES:

VARIABLES
BEARING OFFSET

RECORDARRAYS
RTE MOD

FUNCTIONS AND SUBROUTINES
GET LONG GET REAL INTC WPTSINT LEG MAGVAR NEWPOS XYPOS



-234-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:

CALLING SEQUENCE:
CALLS TO:

RTE WPT
ROUTE.FOR
SLOW
ADD PLAN, ADD WPT, ENTRY_WPT,EXIT WPT,
HLD_IN, KILL_CON, KILL WPT, MERGE,
NEWCON, TRIM WPTS, WAYPOINT
OFFSET = RTE_WPT(RTE_ADR,RTE_TYP, WPT_ADR)

PURPOSE:
To determine if a particular waypoint is part of a data-

base route function.

DESCRIPTION:
RTE WPT is called with the address and type of database

route function. The address of a waypoint is also passed.
The waypoint pointers in the route function body are tested
to determine if the input waypoint is one of the route
waypoints. If it is, the offset from the start of the
route function to the waypoint pointer is returned. Other-
wise a zero value is returned (See the format of AADCOM
route function in section 1.5.1.1).

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
GET LONG



-235-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

SEQUENCE
ROUTE.FOR
SLOW
MERGE, WAYPOINT
BOOLEAN=SEQUENCE(IN_OFFSET,INDEX)

PURPOSE:
To determine proper waypoint sequence for a route function.

DESCRIPTION:
This function returns a boolean result which informs the

caller whether the entry and exit waypoints assigned to a
route function are in the proper sequence. Anytime the
entry and exit waypoints are identical the function returns
an invalid status. Airways and company routes are bidirec-
tional so any pair may serve as entry/exit. SID/STAR/
APPROACHroute functions have their waypoint order pre-
defined by the order in the navigation database. Checks are
performed to affirm that the correct order is maintained.

The parameter list consists of two input parameters. The
first is the offset in the route function data block of the
entry waypoint pointer. The second is the route buffer index
of the designated route function. SEQUENCEmay be called
with the entry offset equal to zero. In this situation the
entry offset is computed from the previous route buffer
element.

GLOBAL REFERENCES:

RECORDARRAYS
RTE MOD

FUNCTIONS AND SUBROUTINES
ENTRY WPT



-236-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

SLASH
ROUTE.FOR
SLOW
WPT ID
INDEX = SLASH(START_INDEX)

PURPOSE:

Search for the "/" character.

DESCRIPTION:

The CDU entry buffer is searched starting at the

character designated by the START INDEX parameter.

function returns the index of the first slash found.

zero is returned when one is not found.

GLOBAL REFERENCES:

ARRAYS

ENTRY

The

A



-237-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:

CALLING SEQUENCE:

TITLE
ROUTE.FOR
SLOW
DSP_TIME, DSP_WPTS,REFRESH_HOLD,
UPDATE
CALL TITLE(TEXT, COUNT,PAGE,LASTPAGE)

PURPOSE:
To create the CDU page title line.

DESCRIPTION:
This procedure generates title line data for several

of the CDU clearance pages. The page identification text
is passed along with the current and last page numbers.

GLOBAL REFERENCES:

VARIABLES
PMODE

FUNCTIONS AND SUBROUTINES
FMTOUT



-238-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:

CALLING SEQUENCE:

TYPE WPT
ROUTE.FOR
SLOW
COMPANY,ECHO, EXPAND_RTE, FILL_RTE,
GROUP, INT_RTE, NEW_ENTRY,RT_NEW,
RTE, UPDATE
TYPE = TYPE WPT(ADDRESS)

PURPOSE:
To determine waypoint type.

DESCRIPTION:
The address of a navigation database waypoint is sent to

this function. TYPE WPT examines the data and returns to
the caller the waypoint type. The logic is outlined below.

NAVAID: If fourth byte of data < 0.
AIRFIELD: If fifth byte of data is a blank.
GRP: Otherwise.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
GET BYTE



-239-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

UPDATE
ROUTE.FOR
SLOW
ROUTE
CALL UPDATE

PURPOSE:
To update CDU display lines for the ROUTEpage.

DESCRIPTION:
This subroutine formats lines of data for the CDU

screen. The utility FMTOUTis used throughout to store
data in the proper format (see section 1.2.1). Page #I
of the ROUTEpage has its own unique format, while all
other pages follow the same template. This module is
called once per iteration of the CDU software. The calls
are used in a cycle of seven steps. On each step a
different section of the ROUTEpage display is updated.
After every seven calls to UPDATEthe entire CDU screen
will have been refreshed. The operations performed on
each pass through this module are summarized below.

PASS #0: The title line is stored by a call to TITLE.
Also the "Via" & "To" labels are sent to line #7 or
line #i. Page #i displaces the labels to line #7.

PASS #i/page #i: The origin and destination airfield
data. Includes labels and airfield names. No air-
field shown as dashes.

PASS #2/page #i: Company route label and name (or dashes).

PASS #3/page #i: Takeoff runway label and name (or dashes).

PASS #(4-5)/page #i and

PASS #(l-5)/not page #i: The various route elements for

the current page and pass. The following list shows

what may be displayed on any route page line.

Waypoint name under the "To" column. The label

"DIRECT" will automatically appear under the "Via"
column.

. Route function name under the "Via" column. The

exit waypoint name, or box prompts, is shown under the

"To" column.

Route discontinuity marker. Shown with box prompts

if previous line does not contain a route function

with box prompts as the exit waypoint.



-240-

• Dash prompts for the first display line which does
not contain any of the above. Only shown when the
PRMT boolean is set.

• The line corresponding to the page/pass iteration is
blanked when none of the above is shown.

PASS #6: The dash line and the "<INDEX" and "ERASE>" tags.

GLOBAL REFERENCES:

VARIABLES
C ADR LASTPG PAGE PASS* PMODEPRMT

ARRAYS
AIRPTS BOXESDASHESRTE CNT

RECORDARRAYS
RTE MOD

FUNCTIONS AND SUBROUTINES
EXIT FMTOUTGET LONG TITLE TYPE WPT



-241-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

WAYPOINT
ROUTE.FOR
SLOW
ADD WPT, DATA IN, MODIFY, RT NEW
CALL WAYPOINT(ADDR, TYPE, INDEX, APPEND)

PURPOSE:
To insert a waypoint into the route buffer.

DESCRIPTION:
This procedure enters a waypoint into the route buffer.

Processing varies for the different waypoint types. In
append mode the new waypoint is simply added to the end of
the route buffer. Otherwise an insertion, possibly with the
creation of route discontinuities, into the buffer is
performed. When insertion occurs the following route
elements, including the one at the selected position, are
moved ahead in the route buffer.

There are four input parameters to WAYPOINT. The first
is the database address of the entered waypoint. Next is
the waypoint type (GRP, NAVAID, ...). The third parameter
is an index into the route buffer to the selected position.
The last parameter is a flag used to identify append mode.

A special situation arises when a runway number is
entered as a waypoint. Two waypoints are placed into the
route buffer and all following elements are deleted. The
two waypoints are created pilot waypoints given the names
APnnx and TDnnx. The "nn" field is the runway number and
the "x" is either "L", "R", or "X" (left, right, neither) .
The "TD" waypoint is placed at the runway touchdown point
and the "AP" waypoint is positioned three nautical miles out
at an elevation of 1005 feet above the runway.

The remaining waypoint types are handled the same.
First the append flag is tested. In this mode the entered
waypoint is placed in the next available route buffer
location. When not in append mode other tests must be
made.

If the waypoint is inserted at a route discontinuity, two
things can occur. If the entered waypoint is already in the
route buffer further along the flight plan, the route buffer
elements between the insertion position and the next
occurence of the waypoint are deleted and the discontinuity
is removed. Otherwise the new waypoint is inserted at the
desired position, moving the following elements ahead one
position, preserving the route discontinuity.

If the waypoint entry was not made to fill in an
undefined route function exit waypoint, the waypoint
is inserted and a test is made to determine if the new
waypoint is a valid entry waypoint to a route function
defined in the next location. If the next element is not
a route function or the new waypoint does not qualify as
an entry waypoint, a route discontinuity is inserted
following the new waypoint.



-242-

When the entry was made to fill in an undefined exit
waypoint, it is tested to verify its definition as part
of the route function. For one-directional route
functions (SID/STAR/APPROACH) a sequence check is made
to ensure the exit comes after the entry waypoint. The
last step is to look ahead for another occurrence of
the entered waypoint. If it does the waypoint up to
and including the duplicate are removed.

GLOBAL REFERENCES:

VARIABLES
ERCODE*

ARRAYS
AIRPTS* RTE CNT

RECORDARRAYS
RTE MOD*

FUNCTIONSAND SUBROUTINES
BREAK EXIT GET CHAR GET REAL MAKE WPTMERGENEWPOS OPEN
REMOVERTE WPT SEQUENCE



-243-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:

CALLING SEQUENCE:

WPT ID
ROUTE.FOR
SLOW
ADD WPT, DATA IN, RT_NEW, DIRECT,
INITUP, WPTADDR
CALL WPT ID(COUNT, ADDRESS, TYPE)

PURPOSE:
To identify the entered waypoint name.

DESCRIPTION:
This procedure is called when the name of a waypoint

is entered on the CDU. The system database (AADCOM)and
the pilot defined waypoint buffer (PPT_WPT) are searched
to determine validity and type of the waypoint. Note
that this module may create pilot waypoints for global
position entries such as absolute LAT/LON.

There is one input and three output parameters in the
call list. The count value is the number of characters
in the waypoint name, which is stored in the global
buffer ENTRY. The address and type parameters are filled
in once the waypoint has been identified. If the waypoint
is not found, the address variable is returned to the
caller zeroed.

The clearance pages of the CDU allow the use of global
position references where waypoint names are normally
entered. These are in the form LATITUDE/LONGITUDE or
WAYPOINT/BEARING/KANGE. The first defines an absolute
global position in terms of geographic coordinates. The
second defines a position relative to a known reference
point. When WPT ID is called with a global reference as
the waypoint name, the waypoint is first created in the
pilot waypoint buffer. Then the address and type are
returned as if the waypoint had previously existed and
was found by the database search. When the relative
reference form is used, the same validity checks are made
for the reference waypoint as is done for standard way-
point identification.

The identification of waypoints depends on length and
content of the entered waypoint name. The waypoint ID
process is outlined below.

2 Character: Must be a runway number. A blank is appended
and the runway lookup utility is called.

3 Character: Either a runway or a Navaid. If the first

characer is a digit it is treated as a runway. Other-

wise the Navaid lookup utility is called.



-244-

4 Character: Either an airfield name or "PPOS". If the

entry is "PPOS" a pilot waypoint is created as mentioned

above. Note that the entry "PPOS"/BEARING/RANGE is a

a valid entry which creates two pilot waypoints. If

not "PPOS" the airfield lookup utility is called.

5 Character: Either a GRP or a previously created pilot

waypoint. First the GRP lookup utility is called. If

successful the GRP data is returned. If not, the pilot

waypoint lookup is invoked.

In all the above cases an error code is set when the various

lookup procedures do not find the waypoint name in the

database.

GLOBAL REFERENCES:

VARIABLES

ERCODE* LAT LON STRING

ARRAYS

AIRPTS ENTRY

RECORD ARRAYS

PPT WPT

FUNCTIONS AND SUBROUTINES

AIRPORT DEGVAL FIND PPT FLTVAL GET REAL LUGRP LUNAVA LURWY
MAG VAR MAKE WPT NEW POS SLASH



-245-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

XYPOS
RTE INTC.FOR
SLOW
RTE INTC
CALL XYPOS(PTR,LAT,LON, X,Y)

PURPOSE:
TO compute waypoint coordinate offsets.

DESCRIPTION:
This procedure is passed an address pointer of a way-

point entry within a database route. Also a reference way-
point's latitude and longitude are passed. The data for the
route waypoint is located in the database and it's LAT/LON
coordinates are fetched. The North and East offsets from
the reference position are then calculated through a call to
the utility GRID.

GLOBAL REFERENCES:

FUNCTIONSAND SUBROUTINES
GET LONG GET REAL GRID





-247-

Section 6.3.7 THE ROUTEINDEX PAGE

The ROUTE INDEX page is accessed via the "<INDEX" prompt
which appears on the lower portion of the ROUTE, LEGS, and
LEGS TIME pages. It mainly serves as an index page with
prompts which may be selected to activate other pages. See
figure 6.10 on the following page.

The file RTENDX.FOR contains the two subroutines for the
Route Index page. The main module puts up a menu on the CDU
screen and accepts pilot entries. All the left hand LSKs
are used for selection of CDU pages involved with flight
plan creation and modification. The upper right side LSK is
used to request the vertical profile generation process on
the current path (not implemented).

The two module discriptions are provided on the following
pages.

PRECEDING PAGE BLANK NOT FILMED





-249-

m

i

B

RTE

SELECT

<TIME

<WIND

<RTE LE6S

<ROUTE

<FROM WPT

INDEX 111

COMPUTE

VERT PATH>

i

The Route Index Page

(figure 6.10)

PAr,[ .... i__ i_'_: "_'O'N;'LLY BI.AI
pR.ECE_Dit+G p,",,:iE _..J!.,,zr..!.'KNOT F_LMED





-251-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

PGA

RTENDX.FOR

SLOW

RTENDX

CALL PGA

PURPOSE:

A dummy module to be replaced by PGA4D algorithm when

complete.

Oq_ ,_IT_,tTION_tLY _tAMI pEEDING PAGe 8' ._,_ _,OT F!L_ED



-252-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

RTENDX

RTENDX.FOR

SLOW

CDUEXC

CALL RTENDX

PURPOSE:

To serve as the executive module for the ROUTE INDEX

page.

DESCRIPTION:

This module receives keyboard inputs and updates the

CDU screen for the ROUTE INDEX page. The following chart
lists the enties processed by RTENDX.

Page change selections. If data exists, it is reprog-

rammed into the scratch pad. (LSK-LI through LSK-L5)

The PGA (dummy) module is called when requested.
(LSK-RI)

A line of the display screen is updated every time

before exiting this module. The screen is completely

refreshed every eight calls. RTENDX has a static display

so no special processing occurs for the line updates.

GLOBAL REFERENCES:

VARIABLES

ERCODE* FROMPG* PGINIT* PGRQST*

ARRAYS

ENTRY*

FUNCTIONS AND SUBROUTINES

FMTOUT PGA REPROG

VARIABLES

ERCODE* FROMPG* PGINIT* PGRQST*



-253-

Section 7.0 THE INITIALIZATION AND REFERENCEPAGES

There are a group of CDU pages refered to as the initial-
ization and reference pages. They are used for the setting
of some initial aircraft parameters, and the inspection of
information pertaining to aircraft systems.

All but two of the pages are accessed through the
INIT/REF index page which is selected by the INIT/REF key
on the CDU keyboard. The EPR Limit and Progress pages each
have their own CDU key to provide direct access to the page.

The remainder of section seven contains descriptions of
the INIT/REF CDU pages and the sofware modules which manage
them.





-255-

Section 7.1 THE INIT/REF INDEX PAGE

The INIT/REF page, also called the "index" page, dis-

plays seven prompts for page changes and accepts a Line
Select Key (LSK) input directing a transfer to a corres-

ponding page. This page is, effectively, a "menu" page.

The diagram on the following page (figure 7.0) shows the

CDU page selections available on the INIT/REF index page.

The INIT/REF code consists of a single FORTRAN module
on the file INITREF.FOR.





-257-

IN IT/REF

<IDENT

<POS

<PERF/BARO

<TAKEOFF

<APPROACH

<NAV DATA

SET

INDEX 1 / 1

STATUS >

TEST>

GPS>

The Init/Ref Index Page

(figure 7.0)

PRECEDING PAGE BLANK NOT FILMED





-259-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

INITREF

INITREF.FOR

SLOW

CDUEXC

CALL INITREF

PURPOSE:

TO display a menu of CDU pages and to enable their

selection by pressing the associated key.

DESCRIPTION:

The INIT/REF page, also called the INDEX page, displays

seven prompts for page changes and accepts a Line Select Key

(LSK) input to cause a transfer to one of those pages. The

code refreshes one CDU line per pass. When there is a

function key input, it is processed through a "calculated

goto" structure in which the appropriate page is called or

an error message displayed.

GLOBAL REFERENCES:

VARIABLES

ERCODE* PGINIT* PGRQST*

ARRAYS

ENTRY*

FUNCTIONS AND SUBROUTINES

FMTOUT REPROG

_. c_.._ i'__ii_i_iiU_'LL'_
PRECEDING Pr_GE _:Atr.._N._ I_iOT FILMED





-261-

Section 7.2 THE SYSTEM IDENTIFICATION PAGE

The IDENT page is the startup CDU display; it is auto-

matically displayed at system startup and remains active

until the operator validates the time at key LSK-L5. The

operator may do so by entering a time through the scratch

pad or by pressing the key with a blank scratch pad. This

forces use of the time from the Data Acquisition System

(DAS). Date entry is optional. This display also includes

two page-request choices, INDEX and POS INIT, at key 6, left

and right. Refer to figure 7.1 on the following page.

The IDENT page is coded in a single FORTRAN module.

PR"E_EDING PAG_ BLAN1K NOT FI!.MErJ





-263-

IDENT 1/1

MODEL ENG I NES

NASA 515 JTSD-7
NAV DATA DATE

TDWR DEN 06127191
0 P PROGRAM DAT E

• i * . i o • , , • o • • • , , • •

<IIR INDEX POS>

m

m

m

m

i

i

The System Identification Page

(figure 7.1)





-265-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

IDENT
IDENT.FOR
SLOW
CDUEXC
CALL IDENT

PURPOSE:
To display startup data regarding the aircraft and the

software versions, and to take operator input for the time
and date.

DESCRIPTION:
The IDENT page is automatically displayed at system

startup and it remains active until the operator validates
the system time at key LSK-L5. No other action is accepted
until this is done. An actual time may be entered in the
form "nnnn:nn," or the key may be pressed with a blank
scratch pad to force use of the Data Acquisition System
(DAS) time.

Date entry is optional and any 8-character input is
acceptable. The only other options on this page are the
page-request choices at key 6 (L & R) for the INDEX and
POS INIT pages.

GLOBAL REFERENCES:

VARIABLES
ERCODEHRSS MINS PGINIT* PGRQST* TIME TIME VLD

ARRAYS
BOXES BULK ID ENTRY*

FUNCTIONSAND SUBROUTINES
BCDTIM DEL IN FMTOUTFMTTIM REPROGTIMVAL

pAO£_(o t{ INTEnTIONaLLYBLA_





-267-

Section 7.3 THE REFERENCE NAVIGATION DATA PAGE

The REF NAV DATA page is used by the flight crew for

identification of items such as waypoints, navaids and

airports. If an item is requested via the CDU keypad,

it is looked up in AADCOM and if found, the appropriate

subpage is displayed. Information about the requested item

is displayed on the subpage and the symbol for the

requested item appears on the map display. If the item is

not found in AADCOM, an informative message is displayed.

The format of the NAV DATA "root" page is shown on the

follwing page (figure 7.2).

pA___. _NTENTION_LLY BLA_

PRECEDII_K_ PAGE BLANK NOT FILMED





-269-

REF NAV DATA I/I

WAY PO I NT NAVA I D

__-

A I R PO RT A I RWAY

<I/R INDEX

m

m

m

m

i

i

The Navigation Data
Page

(figure 7.2)

pAG£_INIENIIONALL¥ BI._NII PRECEDING PAGE BLANK NOT FILMED





-271-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

AIR INPUT

AIRWAY.FOR

SLOW

NAVPG

CALL AIR INPUT

PURPOSE:

To handle CDU entries on the airway waypoint page.

DESCRIPTION:

This module handles CDU keyboard entries while on the

airway waypoint subpage of the NAV data page. The valid

entries are listed below. Note that only function entries

are allowed. If data is on the scratch pad when return to

the "root" page is requested, it will be reprogrammed onto

the scratch pad for use on the main NAV data page.

LSK-LI through LSK-L5

LSK-RI through LSK-R5

LSK-R6

NEXT

PREV

Echo waypoint name to scratch pad

Select map center waypoint

Erase airway waypoints

Next display page

Previous display page

Selecting a NAV format display center waypoint may be

done when one of the Map displays is in "North Up" mode.

The CDU display will show a "<CTR>" bug along side the

chosen waypoint. The Map center selection is passed to the

procedure SET CENTER to signal the displays. When exiting

from the airway waypoint display, LOKWPT is cleared to

remove the airway waypoints from the Map display.

GLOBAL REFERENCES:

VARIABLES

AIR ADR AIR CNT AIR LAST AIR PG AIR PTR* DISPST ERCODE*

PAGE* PGRQST*

ARRAYS

ENTRY LOKWPT*

FUNCTIONS AND SUBROUTINES

FMTOUT GET LONG NAME LEN REPROG SET CENTER

PAO_ 500 INTENTIONALLY BLAN_
,',_,J_'. i_!.Ai'CX NOT FILMED



-272-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

AIR PAGE

AIRWAY.FOR

SLOW

NAVPG

CALL AIR PAGE

PURPOSE:

To display the airway waypoint page.

DESCRIPTION:

This module formats the CDU display data for the air-

way waypoints subpage of the NAV data CDU page. The entire

screen is refreshed in six consecutive passes through this

procedure. On pass "0" the title line and key labels are

sent out. On passes "I" through "5", the five line pairs of

the display page are filled with waypoint name and LAT/LON

values.

The waypoints of an airway are displayed in sets of

five. The "NEXT" and "PREV" page keys may be used to view

different sets of five waypoints within the airway. This

module uses the global variables AIR ADR and AIR PG to find

the waypoint information in AADCOM fur the current page.

The starting address of the airway is in AIR ADR and the

current airway waypoint page number is saved--in AIR PG.

The text "<CTR>" is shown on the right side of--the line

containing the selected Map center waypoint when one of the

Map display formats is in "North Up" mode. The global

variable DISPST (bit mask 2000 hex) indicates a "North Up"

Map. The index within the airway of the selected Map center

waypoint is obtained from the global variable AIR PTR.

GLOBAL REFERENCES:

VARIABLES

AIR ADR AIR CNT AIR LAST AIR PG AIR PTR DISPST

ARRAYS

DASHES

FUNCTIONS AND SUBROUTINES

FMTDEG FMTOUT GET LONG GET REAL NAME LEN



-273-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

CLEAR ENTRY
NAVPG.FOR
SLOW

CALL CLEAR ENTRY

PURPOSE:
To fill the array OUTLINES with blanks.

DESCRIPTION:
This routine blanks all the character data in the array

OUTLINES, so that all the old information can be removed
from the REF NAV DATA page of the CDU display before new
information is added.

GLOBAL REFERENCES:

VARIABLES
OUTLINES*



-274-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

LIST INPUT
AIRWAY.FOR
SLOW
NAVPG
CALL LIST INPUT

PURPOSE:
To handle inputs on the airway list page.

DESCRIPTION:
This module handles CDU keyboard entries when on the

airway list subpage of the NAV data page. LSK-LI through
LSK-L5 and LSK-RI through LSK-R5 are used to echo airway
names to the scratch pad. Other keys that are used are
LSK-L6, LSK-R6, NEXT page, and PREV page. LSK-L6 is used to
toggle between Jet and Victor airways. LSK-R6 returns to
the NAV Data "root" page.

Up to ten airway names are shown per CDU airway list
page. All the airway names in the current list (Victor or
Jet) may be viewed ten at a time using the NEXT and PREV
keys.

The airway name echoed to the scratch pad is obtained
from the navigation database (AADCOM). An index into the
current airway list is computed from the airway list page
index and the line select key used. This index is passed to
the function NAMEPTR to obtain the address of the name
within AADCOM.

Switching between Jet and Victor airway lists is done
by a call to SET LIST. The index of the desired list type
is passed to this procedure.

GLOBAL REFERENCES:

VARIABLES
AIR CNT AIR LAST AIR PG AIR TYPE ERCODE*PAGE* PGRQST*

ARRAYS
ENTRY

FUNCTIONS AND SUBROUTINES
FMTOUTNAMEPTR REPROGSET LIST



-275-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

LIST PAGE
AIRWAY.FOR
SLOW
NAVPG
CALL LIST PAGE

PURPOSE:
To display the CDU airway list page.

DESCRIPTION:
This module formats CDU display text for the airway

list subpage of the NAV Data page. The entire screen is
refreshed every six calls to this module. On pass "0" the
title line and fixed labels are sent out. On passes "i"
through "5" the available airway names for the current list
type (Jet or Victor) are shown, two per line.

The global variable AIR TYPE indicates which type list
is being shown. The title iTne will contain the name of
the current list type. Also the LSK-L6 label will contain
the prompt to select the list type not currently chosen.

The variable "PASS" is used to keep track of where in
the update cycle the module is. When PASS indicates one of
the five lines containing airway names should be updated, an
index into the airway list is computed for the two airway
names which will be shown on that line. The function
NAME PTR is sent these indices to return the addresses in
AADCOMof the names of the airways.

GLOBAL REFERENCES:

VARIABLES
AIR LAST AIR PG AIR TYPE

ARRAYS
DASHES

FUNCTIONS AND SUBROUTINES
FMTOUTNAMEPTR



-276-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

MAGV
NAVPG.DOC
SLOW
PROCESSARP, PROCESS_GRP,PROCESS_NAY
X = MAGV(LAT, LON)

PURPOSE:
To format the magnetic variation for the given coordinates.

DESCRIPTION:
This routine calls MAGVAR with a latitude and longitude to

compute the magnetic variation at a certain location. Then it
converts the value to character data and formats it for output.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
FSTRNGMAGVAR



-277-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

NAMELEN
AIRWAY.FOR
SLOW
AIR INPUT AIR PAGE
LENGTH= NAME--LEN(WPTADDRESS)

PURPOSE:
To find the length of a waypoint name.

DESCRIPTION:
The address of a navigation database waypoint is sent

to this function. The function TYPE WPT is then called to
determine the type of the waypoint. --The length is assigned
from type as follows.

Navaid
Airfied
GRP

3 characters
4 characters
5 charcaters

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
TYPE WPT



-278-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

NAMEPTR
AIRWAY.FOR
SLOW
LIST INPUT LIST PAGE
ADDRESS= NAMEPTR(INDEX)

PURPOSE:
TO find an airway name within an airway list.

DESCRIPTION:
This module returns the address of the airway name

which is located in the position within the current airway
list indicated by the calling parameter, INDEX. If the
requested position is past the end of the airway list, a
pointer to a blank character field is returned.

GLOBAL REFERENCES:

VARIABLES
AIR ADR AIR CNT

FUNCTIONS AND SUBROUTINES
GET LONG



-279-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

NAV INPUT
NAVPG.FOR
SLOW
NAVPG
CALL NAV INPUT

PURPOSE:
To parse CDU keyboard entries for the main REF NAV DATA

page.

DESCRIPTION:
This subroutine is called when a keyboard entry is detected

while on the main REF NAY DATA page. Valid entries on this
page are limited to the following:

• Requesting the INDEX page. If there is data in the
scratch pad, it is reprogrammed into the scratch pad for
use by the requested page.

Requesting the display of information about any waypoint,
navaid, airway, or airport which is contained in the
navigation database (AADCOM).

Upon receipt of a valid data entry, some initialization
variables are set, including the PAGE variable which is set
to reflect the page number of the page appropriate for the
requested item type. Note that information for a waypoint,
navaid or airport can be requested using either LSK-LI,

LSK-L2, or LSK-RI, although the labelling of the LSKs

implies that a certain LSK must be used to request

information about a certain type of item. For airways

information, LSK-R2 is used exclusively•

GLOBAL REFERENCES:

VARIABLES

ERCODE* PGRQST*

ARRAYS

ENTRY

FUNCTIONS AND SUBROUTINES

DEL IN PROCESS AIRWAY PROCESS ARP PROCESS GRP PROCESS NAV

REPROG SET LIST



-280-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

NAVPG
NAVPG.FOR
SLOW
CDUEXC
CALL NAVPG

PURPOSE:
To serve as the REF NAV DATA page executive module.

DESCRIPTION:
This subroutine is the main procedure for the REF NAV

DATA page software. It performs a few top-level functions
beginning with first pass initialization and the computation
of a few variables used by other modules. Input to the REF

NAV DATA page is handled by the module NAV_INPUT, unless one
of the subpages is active. The procedure SUBNAV INPUT is

called for all subpages except for airway information. For

airways either AIR_INPUT or LIST_INPUT is called depending

on the airway information shown. The screen is updated by a

call to REFRESH except when on an airway subpage. Airway

data updates are made by a call to either the procedure
AIR PAGE or LIST PAGE.

GLOBAL REFERENCES:

VARIABLES

PAGE PASS* PGINIT*

ARRAYS

ENTRY* OUTLINES*

FUNCTIONS AND SUBROUTINES

AIR INPUT AIR PAGE CLEAR ENTRY LIST INPUT LIST PAGE

NAV INPUT REFRESH SUBNAV INPUT



-281-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

PROCESSAIRWAY
AIRWAY.FOR
SLOW
NAV INPUT
CALL PROCESSAIRWAY

PURPOSE:
To handle requests for the airway waypoints page.

DESCRIPTION:
This module is called when an airway name is entered on

the NAV Data page of the CDU for display of the waypoints
contained within it. Global variables are set up to enable
the airway waypoint display subpage. If the requested
airway is not found in the database an error code is set
and the subpage is not enabled.

The following list of global variables are set by this
procedure when the requested airway is found in the data-
base.

AIR PG

AIR PTR

AIR CNT

AIR LAST

PAGE

LOKWPT

Current airway waypoints subpage is
initialized to the first page.
Map center waypoint is initialized to the
first waypoint on the airway.
Number of waypoints on the airway is determined
by stepping through the database.
Nuumber of subpages required to show all the
airway waypoints, five per page.
Set to "4" to indicate the airway waypoint page.
is active from the NAV Data "root" page.
The airway address and ID code are set in this
array to cause the displays to place the
selected airway on the Map format.

The subroutine SET CENTERis called to set the Map center
latitude and longitude from the Map center waypoint index
(AIR PTR). This is used by any Map display format in
"North Up" mode.

GLOBAL REFERENCES:

VARIABLES
AIR ADR AIR CNT AIR LAST* AIR PG* AIR PTR* ERCODE* INDAT
PAGE*

ARRAYS
ENTRY LOKWPT*

FUNCTIONS AND SUBROUTINES
GET LONG LUJET LUVIC SET CENTER



-282-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

PROCESSARP
NAVPG.FOR
SLOW
NAV INPUT, SUBNAVINPUT
CALL PROCESSARP

PURPOSE:
To locate an airport in the navigational database and

format information for display on the REF NAV DATA page.

DESCRIPTION:
This routine is called to update the contents of the

array OUTLINES, which contains appropriate informational
data for display on the REF NAV DATA page. Initially,
this routine looks up an airport in the navigational data
base (AADCOM), with a call to LUARP. If found, it
fetches informational data for that airport, performs any
formatting or character conversion and stores the
information in the array, OUTLINES. It stores the
address of the airport and an airport type code in LOKWPT,
so that the airport can be displayed on the MAP display
format. Also, the variables LATCEN and LONCENare set to
the latitude and longitude of the specified airport, for
the purpose of specifying the center of the MAP format.
If the requested airport is not found in AADCOMan
appropriate error message is displayed.

Note that prior to looking up the airport in AADCOM,
the previous item address is stored off. This handles the
particular case where airport information is currently
displayed and a different airport is requested. If the new
airport is not found, the original information remains on
the CDU display. Then if a runway for the displayed
airport is requested, the original airport address is
available to look up the runway.

GLOBAL REFERENCES:

VARIABLES
ADDR ERCODE*LATCEN* LONCEN* NLAT NLON PAGE* PASS* TARP

ARRAYS
ENTRY LOKWPT* OUTLINES*

FUNCTIONS AND SUBROUTINES
CLEAR ENTRY FMTDEGFMTOUTFSTRNGGET REAL LUARP MAGV
GET WORDLUNAVA MAGV



-283-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

PROCESSGRP
NAVPG.FOR
SLOW
NAV INPUT, SUBNAVINPUT
CALL PROCESSGRP

PURPOSE:
To locate a waypoint in the navigational database and

format information for display on the REF NAV DATA page.

DESCRIPTION:
This routine is called to update the contents of the

array OUTLINES, which contains appropriate informational
data for display on the REF NAV DATA page. Initially,
this routine looks up a waypoint in the navigational data-
base (AADCOM), with a call to LUGRP. If it is not found, it
searches for the requested waypoint in the pilot defined
waypoint buffer. If the waypoint is not located in either
place, an appropriate error message is displayed.

If the waypoint is found in either AADCOMor the
pilot defined waypoint buffer, this routine then fetches
informational data for that waypoint, performs any for-
matting or character conversion and stores the information
in the array, OUTLINES. Note that the information
displayed for a pilot defined waypoint differs slightly
from the information diplayed for a waypoint which is
contained in the navigation database. In either case,
this routine stores the address of the waypoint and a
waypoint type code in LOKWPT, so that the waypoint can be
displayed on the MAP display format. Also, the variables
LATCEN and LONCENare set to the latitude and longitude of
the specified waypoint, for the purpose of specifying the
center of the MAP format.

GLOBAL REFERENCES:

VARIABLES
ADDR ERCODE*LATCEN* LONCEN* NLAT NLON PAGE* PASS* TGRP

ARRAYS
ENTRY LOKWPT*OUTLINES*

RECORDARRAYS
PPT WPT

FUNCTIONSAND SUBROUTINES
CLEAR ENTRY FIND PPT FMTDEGFMTOUTLUGRPMAGV



-284-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

PROCESSNAY
NAVPG.FOR
SLOW
NAV INPUT, SUBNAVINPUT
CALL PROCESSNAV

PURPOSE:
TO locate a navaid in the navigational database and

format information for display on the REF NAV DATA page.

DESCRIPTION:
This routine is called to update the contents of the

array OUTLINES, which contains appropriate informational
data for display on the REF NAY DATA page. Initially,
this routine looks up a navaid in the navigational data-
base (AADCOM), with a call to LUNAVA. If found, it
fetches informational data for that navaid, performs any
formatting or character conversion and stores the
information in the array, OUTLINES. It stores the
address of the navaid and a navaid type code in LOKWPT,
so that the navaid can be displayed on the MAP display
format. Also, the variables LATCEN and LONCENare set to
the latitude and longitude of the specified navaid, for
the purpose of specifying the center of the MAP format.
If the requested navaid is not found in AADCOMan
appropriate error message is displayed.

GLOBAL REFERENCES:

VARIABLES
ADDR ERCODE* LATCEN* LONCEN* NLAT NLON PAGE* PASS* TNAV

ARRAYS
ENTRY LOKWPT* OUTLINES*

FUNCTIONS AND SUBROUTINES
CLEAR ENTRY FMTDEGFMTOUTFRMFRQFSTRNGGET BYTE GET REAL
GET WORDLUNAVAMAGV



-285-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

PROCESSRWY
NAVPG.FOR
SLOW
SUBNAVINPUT
CALL PROCESSRWY

PURPOSE:
To locate a runway in the navigational database and

format information for display on the REF NAV DATA page.

DESCRIPTION:
This routine is called to update the contents of the

array OUTLINES, which contains appropriate informational
data for display on the REF NAV DATA page. This routine
looks up a runway in the navigational database (Bulk
Data), beginning the search at a specified airport address,
with a call to LURWY. If found, it fetches informational
data for that runway, performs any formatting or character
conversion and stores the information in the array,
OUTLINES. It stores the address of the runway and a
runway type code in LOKWPT, so that the runway can be
displayed on the MAP display format. If the requested
runway is not found in AADCOMan appropriate error
message is displayed.

GLOBAL REFERENCES:

VARIABLES
ADDR ERCODE*TRWY

ARRAYS
ENTRY LOKWPT*OUTLINES*

FUNCTIONSAND SUBROUTINES
FSTRNGGET REAL LURWY



-286-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

REFRESH
NAVPG.FOR
SLOW
NAVPG
CALL REFRESH

PURPOSE:
To update the CDU display for the REV NAY DATA pages.

DESCRIPTION:
This subroutine updates the CDU display for the REF NAY

DATA page with calls to FMTOUT. The entire screen is updated
every sixteen consecutive calls to this subroutine. The value
of PASS determines which particular lines are updated. During
the first call of the cycle, the page title is output along
with an indication of the current and last page numbers.
Information about the requested item is displayed on lines #i
through #10. Line #II contains dashes and line #12 contains a
label for the LSK which provides access to the INDEX page. If
information is presently being displayed on the REF NAY DATA
page, then line #12 also contains a label for the LSK which
enables the erasure of the information.

GLOBAL REFERENCES:

VARIABLES
PAGE PASS*

ARRAYS
DASHESOUTLINES

FUNCTIONSAND SUBROUTINES
FMTOUT



-287-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

SET CENTER
AIRWAY.FOR
SLOW
PROCESS_AIRWAY,AIR__INPUT, NAVPG
CALL SET CENTER

PURPOSE:
To set the Map center LAT/LON.

DESCRIPTION:
This module fetches the latitude and longitude of the

airway waypoint chosen as the Map center position. The
global variable AIR PTR is the index of the waypoint within
the currently displayed airway. The variables LATCEN and
LONCENare set for use by the NAV display format. The
values are found by using the start address (AIR ADR) and
an offset computed from the Map center index to access the
waypoint address. See the database description (AADCOM)
in section 6.1.1 for the structure of airways within the
database.

GLOBAL REFERENCES:

VARIABLES
AIR ADR AIR PTR GDTIME* LATCEN* LONCEN*

FUNCTIONSAND SUBROUTINES
GET LONGGET REAL



-288-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

SET LIST

AIRWAY.FOR

SLOW

NAV INPUT LIST INPUT

CALL SET LIST(AIRWAY TYPE)

PURPOSE:

To handle requests for the airway list page.

DESCRIPTION:

This procedure is called to enable the airway list

page, when LSK-R2 is pressed with no data on the

scratch pad, on the NAV Data page of the CDU. It is passed

the type of airway list desired in the calling sequence

(0: Jet airway I: Victor airway).

The following global variables are set up by this

procedure to enable the airway list page.

AIR PG

AIR TYPE

AIR ADR

AIR CNT

AIR LAST

PAGE

The current airway list subpage is initial-

ized to the first one.

Set to the index of the requested list type

(Jet or Victor).

Set to the starting address within the data-

base of the airway list.

Set to the number of airways in the list.

Set to the number of pages required to show

all the airway names in the list (I0 per page).

Set to "5" to indicate the airway list page of

the NAV data page is enabled.

Refer to section 6.1.1 for the structure of airway lists

in the navigation database (AA/]COM).

GLOBAL REFERENCES:

VARIABLES

AIR ADR AIR CNT AIR LAST* AIR PG* AIR TYPE* JPTR PAGE* V]?TR

FUNCTIONS AND SUBROUTINES

GET LONG



-289-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

SUBNAVINPUT
NAVPG.FOR
SLOW
NAVPG
CALL SUBNAVINPUT

PURPOSE:
TO parse CDU data entries for the navaid data subpage,

the waypoint data subpage or the airport data subpage of
the REF NAV DATA page.

DESCRIPTION:
This subroutine is called when a data entry is detected

while on one of the three informational subpages of the REF
NAV DATA page. Valid entries on this page are limited to
the following:

Requesting the INDEX page. If there is data in the
scratch pad, it is reprogrammed into the scratch pad for
use by the requested page.

Requesting the display of information about any waypoint,
navaid or airport which is contained in the navigation
database (AADCOM). Upon receipt of a valid data
entry, some initialization variables are set, including
the PAGE variable which is set to reflect the page number
of the page appropriate for the requested item type.
Note that information may be requested for a waypoint,
navaid or airport from any of the three informational
subpages.

. Erasing the display of waypoint, navaid or airport
information. The main REF NAV DATA page is then displayed
and the item is also removed from the MAP display format.

If information on an airport is curently displayed, then
information about a particular runway may be requested.

GLOBAL REFERENCES:

VARIABLES
ERCODE* PAGEPGINIT* PGRQST*

ARRAYS
ENTRY LOKWPT*

FUNCTIONSAND SUBROUTINES
DEL IN FMTOUTPROCESS_ARPPROCESS_GRPPROCESS_NAYPROCESS_RWY
REPROG





-291-

Section 7.4 THE INITIAL POSITION PAGE

The "Initial Position" page, labelled INITPOS, displays
the aircraft geographical position and groundspeed and
allows the operator to initialize or modify the position
estimate. It also, on request, displays the location of any
reference point in the database. Refer to figure 7.3 on
the following page.

The INITPOS page is coded in three FORTRANsubroutines
on the file INITPOS.FOR (INITPOS, INITUP, and STRIPR).

PAt_ ._c_ 0 INTENTIONALLY B'I.AI
:_ ,_:__:_:_,_ E'A,,i,_ .Ft&rA_, NOT FILMED





-2 93-

m

m

i

m

m

PO.5 INIT 1/1

FMC PO S G S 200KT
N34" 00' 00" W075" 00' 00"

ADI RS POS G$ 200KT

N34"00'02" W075"59' 59"
R E F PO I NT CCV

N37°20'54 '' W075"59' 59"

<IIR INDEX ROUTE>

The Position Initialization Page

(figure 7.3)

PA_I_ 59 _ INILNIIUNALLY BLAN¢_





-295-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

INITPOS
INITPOS.FOR
SLOW
CDUEXC
CALL INITPOS

PURPOSE:
A)

B)

C)

Permits the operator to initialize or modify the

aircraft position estimate.

Displays the aircraft position and groundspeed.

Displays the location of any reference point in the

database, in response to an operator request.

DESCRIPTION:

INITPOS nominally refreshes one CDU line per iteration,
under the control of a "calculated GOTO" structure. If

there is user input, subroutine INITUP is called first to

take care of that.

The discrete POSMOD controls the display in several

respects, both in the main routine and in INITUP. It is set

in INITUP when the operator inputs a valid Lat/Lon to update

the computed aircraft position. While it is TRUE, the word

"MOD" is displayed in reverse video on the title line of the

CDU. Also, for the FMC position on line #2, the user's input

is held on static display in reverse video until it is

either accepted or rejected by the user. Finally, on line

#12, the prompts "<ERASE" and "ACCEPT>" are displayed in

place of the usual page change prompts.

Page refreshing is otherwise straightforward except that

position validity is verified by checking the discrete INAVV

and/or LLINIT, and the reference point status by checking

LINE6 ACT. If the FMC position hasn't been initialized, it

is displayed as boxes, indicating that the initialization is

required. At line #5, if a reference point has not been

displayed earlier, the label is output as dashes and the

coordinates line is left blank.

GLOBAL REFERENCES:

VARIABLES

GS GSINS INAVV LAT LATINS LATMP LINE6 ACT LLINIT LON LONINS

LONTMP PGINIT* POSMOD RFCNT

ARRAYS

DASHES ENTRY* LATADIR LATFMC LATRF LONADIR LONFMC LONRF RFID

FUNCTIONS AND SUBROUTINES

FMTDEG FMTOUT INITUP OTS$CVT L TI



-296-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

INITUP
INITPOS.FOR
SLOW
INITPOS
CALL INITUP

PURPOSE:
To process function key and scratch pad input.

DESCRIPTION:
Subroutine INITUP processes user input which might be

either a position update from the scratch pad, or a function
key command. INITUP is structured as a nested IF/ELSE
command. At the first level, the "IF" block processes
function key inputs, and the "ELSE" block handles data input
from the scratch pad. In each case, all the function keys
are checked. Error messages are sent out for bad data and
for invalid keys. When a position update or display is
called for, FMTDEG is called to generate a latitude and

longitude. Then STRIPR is called to reformat the position

data and display it on the scratch pad. The flag POSMOD is

set when a position update is in progress and it subsequen-

tly controls the interpretation of key input in most cases.

GLOBAL REFERENCES:

VARIABLES

ERCODE* IDDLAT* IDDLON* INAVV INDAT LAT LATINS LATMP LINE6 ACT*

LLINIT LON LONINS LONTMP PGRQST* POSMOD* RFADDR RFCNT

ARRAYS

ENTRY LATADIR LATFMC LATRF LONADIR LONFMC LONRF RFID*

FUNCTIONS AND SUBROUTINES

DEGVAL DEL IN FMTDEG GET REAL REPROG STRIPR WPT ID



-297-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

STRIPR
INITPOS.FOR
SLOW
INITUP
CALL STRIPR

PURPOSE:
To remove degree, minute, and second symbols from the

byte strings for latitude and longitude and then to print
the position information on the scratch pad as:
Nddmmss/Eddmmss.

DESCRIPTION:
The digits of the latitude and longitude are read into

a byte buffer, a slash is inserted between them, and FMTOUT
is called to print the position on the scratch pad.

GLOBAL REFERENCES:

FUNCTIONSAND SUBROUTINES
FMTOUT





-299-

Section 7.5 THE EPR LIMIT PAGE

The engine pressure ratio (EPR) limits are calculated
in subroutine EPRLMT. The EPRLIM page displays the four EPR
limits, for go-around, maximum continuous thrust, climb, and
cruise. It also permits the operator to change the active
limit by pressing the line select key adjacent to the desired
limit. The active limit is indicated by the "<ACT>" flag
next to it. Additionally, the current EPR for each engine
is listed at the bottom of the display. Refer to figure
7.4 on the following page.

This routine is coded in one FORTRANsubroutine titled
EPRLIM.

pi:_CEDING PAGE BLANK NOT FILMED

P_ ._)Fc__INTENTIONALLY BLAf_





-301-

m

m

EPR LIMIT 111

GA 1. 983

MCT 1. 940

C LB 1. 965

CRZ 1. 900

1. 954 1. 953
EPR 1 EPR 2

<ACT>

The EPR Limit Page

(figure 7.4)

r-_. aw.r',)
P.M_ -zJO0 INTENTIONALLY BI.AIW PRECE_liqG PAGE i_l./__ NO; ,-.L,_,





-303-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

EPRLIM

EPRLIM.FOR

SLOW

CDUEXC

CALL EPRLIM

PURPOSE:

To print the engine pressure ratio (EPR) limits on the

EPRLMT display and to permit manual selection of the EPR

limit for auto-throttle operations.

DESCRIPTION:

This routine displays EPR limits; it does not compute

them. That is done separately by subroutine EPRLMT.

As illustrated in figure 7.4, the EPR limits are

displayed for go-around, maximum continuous thrust, climb,

and cruise. Additionally, the current EPR for each engine is

displayed at the bottom of the screen.
The code first checks for a function key input,

accepting keys L1 through L4 only. If a valid key was

pressed, the global EPRFLG is set to a number signifying the

selected EPR. If no key was pressed, the routine refreshes

one line of the display per pass. The flag "<ACT>" is shown

adjacent to the selected EPR limit as dictated by EPRFLG.

GLOBAL REFERENCES:

VARIABLES

EC6 EPRI EPR2 EPRPLG ERCODE* GAEPR MCLEPR MCREPR MCTEPR PGINIT*

AR_YS

ENTRY*

FUNCTIONS AND SUBROUTINES

FMTOUT OTS$FLOAT

PAOE _O_ INTENTIONALLY _AIW PRECEDING PAGE BLANK NOT FILMED





-305-

Section 7.6 THE PROGRESS PAGE

The position of the aircraft and key navigation data

relative to the flight plan are presented on the two

PROGRESS pages. In particular, page 1 displays data

pertinent to the active waypoint and to the active 2D, 3D,

or 4D flight path. Page two displays the current position

estimate and the currently selected navaids. This page also

allows the user to transfer the position or DME data to the

scratch pad and to manually reset DME 2 or DME 3. Manual

tuning mode can be toggled to automatic mode, or vice versa,

by pressing the delete key followed by the appropriate line

key. Both pages offer a page change to the Climb, Cruise,

or Descent pages as appropriate for the current flight

phase. Refer to figures 7.5 and 7.6 on the following pages.

This display is coded in two FORTRAN subroutines,

PROGRESS and ACTION, in the file PROGRESS.FOR.

PAGf. ._O c/ I_IILNTIONALLV 8LANI{ PRECEDI_iG PAGE BLAN_ NOT FILMED





-307-

m

s

i

m

m

m

WPT

LFI
ALT

500OFT

AE

1.0Hi

PROGRESS

DTG

3.3NM
FPA

0.4"
FPAE

+ 0 O"

1/2

ETA

1557' 56
XTKE

O. 82R
TKAE

3.1"

RTA

TMER

14NM TO RTA

1100:00

+0:00:00

WFBBF
GS 200KT

8SE OKT

<CLB

m

m

m

m

m

I

The Progress Page
(#1)

(figure 7.5)

PAOE _0_ IN'rFNTIONALLY _AM

PRECEDING PAGE BLAi'q_K NOT F!'__'ED





-309-

m

I

m

_m

B

PROGRESS 2/2

PPOS

N34 ° 00' O0"
DME 2

ORF 1 16.gOA
NEXT 2

HCM 108. 80
NAV SOURCE

IDD

W075 ° 00' 00"
DME 3

LFI 112.30A

<CLB

The Progress Page
(#2)

(figure 7.6)

PAOE _0_3_ iNTENTIONALLY B1At_ PRECED|I_,IG PAGE BLANK NOT FILMED





-311-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

ACTION

PROGRESS.FOR

SLOW

PROGRESS

CALL ACTION(PASS,PAGE1)

PURPOSE:

To process user input for the PROGRESS page.

DESCRIPTION:

In subroutine ACTION, function key input is processed

first, beginning with the functions common to both pages.

This includes page requests (CLB, CRZ, DESC) and toggling

between PROGRESS pages 1 and 2. Since no other function is

valid for page i, processing continues for page 2. For keys

L1 and RI, the position coordinates are moved to the scratch

pad. For keys L2, R2, and L3, the station identifier is

moved to the scratch pad.

For data input, which is allowed only on page 2 and

only for the navaid identifiers on line 4 (keys L2 & R2),

three letter inputs are used to find the address of a new

navaid. Otherwise, if the DELETE key was pressed and manual

tuning was in effect, then auto-tuning is enabled. Any

other keys or conditions result in an error message.

GLOBAL REFERENCES:

VARIABLES

ATNAV2* ATNAV3* ATUNE2* ATUNE3* ERCODE* GUID2D INAVV LAT

LLINIT LON NVAD2A* VAD2B NVAD3A* PGRQST* TOWPT

ARRAYS

ENTRY*

RECORD ARRAYS

WPT ACT

FUNCTIONS AND SUBROUTINES

DEL IN FMTDEG FMTOUT GET CHAR GET WORD LUNAVA REPROG STRIPR
m __ __

FR'ECEDI?,)G P,%GE Bt.Ai_ NOT F!LMED



-312-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

PROGRESS

PROGRESS.FOR

SLOW

CDUEXC

CALL PROGRESS

PURPOSE:

A) To display data on the active waypoint and the active

2D, 3D, or 4D flight path.

B) To display and allow changes to the tuning of the

navigation radios.

C) To determine which page change prompt to offer, and to

request that change in response to key input.

DESCRIPTION:

The PROGRESS page 1 allows the flight crew to observe

data pertinent to the active waypoint and to the active 2D,

3D, or 4D flight path. Page 2 displays the aircraft

position estimate and the selected navaids. It also

implements manual tuning of the navigation radios and an

option is provided to toggle the radio tuning mode between

manual and automatic.

Both pages use LSK-L5 to request transfer to the Climb,

Cruise, or Descent pages. Which of the three is determined

by external conditions [WPT ACT(TOWPT-I).PHASE].

On page I, all other line select keys (LSKs) are non-

functional. On page 2, the operator may transfer the

Lat/Lon or any of the three Navaid identifiers to the

scratch pad. Page 2 updates are done by selecting the

appropriate LSK when there is valid data on the scratch pad.

The "next #2 navaid" cannot be updated by the user.

When either active Navaid is in manual tuning mode, it can

be reset to auto by pressing the DELETE key followed by the

appropriate LSK.

The code is structured so that on any operator inter-

action subroutine ACTION is called to process the input,

after which subroutine PROGRESS terminates. If there is

no input, then the routine computes and refreshes one CDU

line per pass. Which page to update is determined by the

discrete PAGE1, which, in turn, is toggled when the user

presses the NEXT or PREY key on the CDU panel.

There are two "calculated goto" structures, one for

each page, followed by a correspondingly labelled code block

for each line on each page. The progress data and their

meanings are outlined below:



-313-

PAGE I: Label Source or Meaning

Line 2: WPT =
DTG =
ETA =

WPT ACT(TOWPT).NAME
DTOGOconverted to nautical miles
(DTOGO/GSFPS)+ TIME

Line 4 : ALT =
FPA =
XTKE =

ALTCOR
GAMMA
XTK x FTONM,
"R" if XTK > 0.
Blank if not at least 2D guidance.

Line 6: AE =
FPAE =

TKAE =

Lines 8-10:

RTA

HER, "LO" if HER > 0.

PFPA - GAMMA, "+" if > 0.

TKE, "R" if > 0.

Blank if not at least 2D guidance.

Done through calls to Climb page

(RTA_LN8, RTA_LN9, RTA_LNI 0)

NOTE: If no RTA is available, "NO RTA ASSIGNED" appears on

line 8, and lines 9-11 are blank.

PAGE 2: Label

Line 2: PPOS =

Line 4:

Line 6:

Line 7:

LINE 12:

DME 2

ID =

FREQ =

DME 3

ID =

FREQ =

NEXT 2

ID =

FREQ =

NAV SRC =

Prompt =

Source or Meaning

LAT, LON

Blank if no valid position estimate.

NAVAD2A

ATUNE2,

"A" if ATNAV2 AND DME2FQ = ATUNE2

"M" if NOT ATNAV2

NAVAD3A

ATUNE3,

"A" if ATNAV3 AND DME3FQ = ATUNE3

"M" if .NOT. ATNAV3

NAVAD2B

NAVAD2B + 4

NAVTYP

Both pages:

WPT ACT(TOWPT-I).PHASE

If = 1 then use <CLB

If = 2 " " <CRC

If = 3 " " <DES

But no prompt if not at least

2D guidance.



-314-

GLOBAL REFERENCES:

VARIABLES
ACTCNT ALTCOR ATNAV2 ATNAV3 ATUNE2 ATUNE3 DME2FQDME3FQDTOGO
GAMMAGSFPS GUID2D GUID3D HER INAVV LAT LLINIT LON NVAD2A
NVAD2B NVAD3A PFPA PGINIT* TIME TKE TOWPTXTK

ARRAYS
DASHESENTRY NAVTYP

RECORDARRAYS
WPT ACT

FUNCTIONS AND SUBROUTINES
ACTION FMTDEGFMTOUTFMTTIM FRMFRQGET CHARGET WORD

OTS$CVT L TI OTS$FLOATRTA LNI0 RTA LN8 RTA LN9--



-315-

Section 7.7 THE PERFORMANCEINITIALIZATION PAGE

The PERFORMANCE/INITIALIZATION page of the CDU is used
to initialize and display various aircraft performance
parameters. This CDU page is accessed by pressing the
"<PERF" prompt on the INIT/REF INDEX page and is exited by
pressing the "<INDEX" prompt or "TAKEOFF>" prompt on the
pERFORMANCE/INITIALIZATION page, or by selecting a different
CDU page from the CDU panel. Refer to figure 7.7 on the

following page.

The aircraft parameters and their associated global

variables that can be modified via this page include:

PARAMETER VARIABLE UNITS

AIRCRAFT GROSS WEIGHT

AIRCRAFT ZERO FUEL WEIGHT

BARO SETTING

COST INDEX

CRUISE ALTITUDE

INDICATED AIRSPEED REFERENCE

OPTIMUM ALTITUDE

WEIGHT LBS*I000

ZFW LBS*I000

BARSET IN

CINDEX

CRZALT FT

IASREF KTS

OPTALT FT

The aircraft filtered total fuel quantity varaible

FTFQ is also displayed on this page, but its value can

not be modified.

The parameters on this page are updated once every 15

SLOW task cycles.





-317-

8R055

94.2
FUEL

20.2
ZFW
74.0

PERF

WT

INIT 1/1

CRZ ALT

FL300
OPT ALT

BARSET

29.92

COST I NDEX I A5REF

IIIIM 13o

<I I R INDEX TAKEOFF>

I I

m

m

m

m

E

The Performance Initialization
Page

(figure 7.7)

PM_-_:_.__.. INI'£NTIONALI-Y BtAM P_:_;:;"',:'_; '_ .... - " t'_ , i F_LIV'ED





-319-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

PFINIT

PFINIT.FOR

SLOW

CDUEXC

CALL PFINIT

PURPOSE:

The purpose of this CDU module is to display as well

as accept modifications to various aircraft performance

parameters.

DESCRIPTION:

This module is called by the CDU executive CDUEXC when

the user has selected the PERFORMANCE/INITIALIZATION page.

The CDU page managed by this module is accessed by pressing

the "<PERF" prompt on the INIT/REF INDEX page and is exited

by pressing the "<INDEX" prompt or "TAKEOFF>" prompt on the

PERFORMANCE/INITIALIZATION page, or by selecting a different

CDU page from the CDU panel.

If any CDU inputs are made, the PFINIT input processing
routine PFINP is called.

PFINIT is called once per SLOW cycle. One CDU line is

output per PFINIT call. Actual CDU output is handled via

calls to the FMTOUT routine.

GLOBAL REFERENCES:

VARIABLES

BARSET CINDEX CRZALT FLKEY FTFQ GWSET IASREF OPTALT
PGINIT* WEIGHT ZFW

ARRAYS

BOXES DASHES ENTRY*

FUNCTIONS AND SUBROUTINES

CDU SMALL FMTOUT OTS$CVT L TI OTS$FLOAT PFINP

PAtR___ FNT59Tr0N_,[Ly _APll PRECEDING PAGE BLANK NOT FILMED



-320-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

PFINP

PFINIT.FOR

SLOW

PFINIT

CALL PFINP

PURPOSE:

The purpose of this routine is to handle user inputs

made from the CDU PERFORMANCE/INITIALIZATION page.

DESCRIPTION:

This module is called from the PFINIT routine whenever

a user makes an input from the CDU PERFORMANCE/INITIALIZATION

page. There are two basic types of CDU inputs handled by
this module -- i) Blank Scratch Pad + Line Select Key (LSK),

and 2) Scratch Pad Data + Line Select Key.

If there is no data on the scratch pad when an LSK is

pressed, the following applies:

LSK-LI: Since data was expected for "GROSS WT", a "NO

DATA" error message will be displayed on the

scratch pad.

LSK-L2: The "FUEL" parameter cannot be modified. A

"DEAD KEY ERROR" message will be displayed on

the scratch pad.

LSK-L3: Since data was expected for "ZFW" "NO, a DATA"

error message will be displayed on the scratch

pad.

LSK-L4: No parameter. A "DEAD KEY ERROR" message will be

displayed on the scratch pad.

LSK-L5: Since data was expected for "COST INDEX", a "NO

DATA" error message will be displayed on the

scratch pad.

LSK-L6: The "<INDEX" prompt was pressed and the CDU

INIT/REF INDEX page becomes active.

LSK-RI: "CRZALT" was pressed. If the global Cruise

Altitude variable CRZALT is > 0, the value of

CRZALT is copied to the scratch pad by calling

the PROG LN routine; otherwise, a "DEAD KEY

ERROR" e?ror message will be displayed on the

scratch pad.

LSK-R2: Although the "OPT ALT" parameter is shown at

this LSK, it is not currently implemented. No

data will be accepted. A "DEAD KEY ERROR" error

message will be displayed on the scratch pad.



-321-

LSK-R3: Since data was expected for "BARSET", a "NO
DATA" error message will be displayed on the
scratch pad.

LSK-R4: No parameter. A "DEAD KEY ERROR" message will be
displayed on the scratch pad.

LSK-R5: Since data was expected for "IASREF", a "NO
DATA" error message will be displayed on the
scratch pad.

LSK-R6: The "TAKEOFF>" was pressed and the CDU TAKEOFF
page becomes active.

If there is data on the scratch pad prior to pressing
an LSK, the following applies:

LSK-LI: A data entry was made for "GROSSWT". The data
should be the aircraft gross weight in thousands
of pounds. For example, if the aircraft is known
to weigh 93100 pounds, the data entry should be
93.1. The zero fuel weight is computed as gross
weight less the filtered total fuel quantity;
however, before setting the actual global
variables GRWGTand ZFW, the FUEL LIM routine is

1

called to verify the following:

74000 <= new GRWGT <= 102000

&

65000 <= new ZFW <= 77600.

If these tests are passed, GRWGT and ZFW are

appropriately set; otherwise, their values remain

unchanged and a "DATA OUT OF RANGE" message is

displayed on the scratch pad.

LSK-L2: The "FUEL" parameter cannot be modified. A

"DEAD KEY ERROR" message will be displayed on

the scratch pad.

LSK-L3: A data entry was made for "ZFW", zero fuel

weight. A new gross weight is computed as the

new zero fuel weight plus the filtered total

fuel quantity. The same test required when

entering gross weight (see LSKLI above) is

performed with similar actions taken on the

results.



-322-

LSK-L4:

LSK-L5:

LSK-L6:

LSK-RI:

LSK-R2:

LSK-R3:

No parameter. A "DEAD KEY ERROR"message will be
displayed on the scratch pad.

The cost index to be used by the PGA-4D
algorithm is entered here. It must be a number
between 0 and 200 inclusively in order for the
global variable CINDEX to be set. If it is not
in this range, a 'DATA OUT OF RANGE' message is
is displayed on the scratch pad. (note that the
PGA-4D program is currently not implemented)

The "<INDEX" prompt was pressed. REPROGis
called to save the data before switching to the
INIT/REF INDEX CDU page.

CRZALT is entered at this LSK.
in a number of formats:

It can be entered

I) 0000 <= data <= 0999 (4 chars);
CRZALT is displayed as a number between 0 and
999.

2) I000 <= data <= 18000;

CRZALT is displayed as entered.

3) 1 <= data <= 400 (i to 3 chars);

CRZALT is displayed as (data * 100).

4) 18000 <= data <= 40000;

CRZALT is displayed as a flight level.

(e.g. if data = 32000, it will be displayed
as FL320)

If data < 0, data > 400 (3 chars), or

data > 40000, a 'DATA OUT OF RANGE' message will

be displayed on the scratch pad. In the valid

formats listed above, the CRZALT will be assigned

to all cruise waypoints in the current active

flight plan.

The CRZALT value is determined by calling the

ALTX function. ALTX decodes the input data

using the rules of the formats above.

Although the "OPT ALT" parameter is shown at

this LSK, it is not currently implemented. No

data will be accepted. A "DEAD KEY ERROR" error

message will be displayed on the scratch pad.

The "BARSET" barometric setting is accepted here.
It has a default value of 29.92.



-323-

LSK-R4: No parameter. A "DEAD KEY ERROR" message will be

displayed on the scratch pad.

LSK-R5: The "IASREF" parameter is entered at this LSK.

It has a default value of 130.

LSK-R6: The "TAKEOFF>" prompt was pressed. REPROG is

called to save the prompt data before switching

to the TAKEOFF page.

If the data on the scratch pad is DELETE and the LSK

selected normally accepts data, an "INVALID DELETE" message

is displayed on the scratch pad. Also note that if any

entry cannot be successfully converted from character to

floating point format, a "BAD DATA FORMAT" message will be

output.

GLOBAL REFERENCES:

VARIABLES

BARSET* CINDEX* CRZALT ERCODE* FLKEY* FTFQ GRWGT IASREF*

INDAT PGRQST* ZFW

ARRAYS

ENTRY

FUNCTIONS AND SUBROUTINES

ALTX DEL IN FUEL LIM NEWCRZ OTS$CVT T F PROG LN REPROG



-324-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

FUEL LIM
PFINIT.FOR
SLOW
PFINP
CALL FUEL LIM(GW, Z, GRWGT,ZFW, ERCODE)

PURPOSE:
This routine is called by PFINP to make sure that the

aircraft gross weight (GW) and zero fuel weight (Z) inputs
are within specific limits.

DESCRIPTION:
The tests for the GWand Z inputs are:

74000 <= GW<= 102000

&

65000 <= Z <= 77600.

If these tests are passed, the GRWGTand ZFW input
parameters are set to GWand Z respectively. The global
booleans GWSETand GWRESETare also set. If either of the
tests fail, ERCODEis set to reflect that the data is out of
range.

GLOBAL REFERENCES:

VARIABLES
GWRESET*GWSET*



-325-

Section 7.8 THE STATUSPAGE

The STATUSpage of the CDU displays the status of
various onboard systems. It is accessed by pressing the
"STATUS>" prompt on the INIT/REF INDEX page. It is exited
by pressing the "<INDEX" prompt on the STATUSpage, or by
selecting a different CDU page from the CDU panel.

The status of six of the seven systems being
monitored will be denoted as "OK" when functioning properly,
or "BAD" when a failure has been detected. The seventh
system denotes whether the localizer frequency has been
selected "SEL" or not selected "NOSEL". These statuses
reflect the value of associated global variables called
valids. The systems and their valids are:

SYSTEM VALID

AIR DATA SYSTEM
INERTIAL REFERENCE
CROSSSTATION DME
PATH STATION DME
LOCALIZER FREQUENCYSELECTED
LOCALIZER
GLIDESLOPE

ADVAL
INAVV
DME3VD
DME2VD
LOCFS
LOCVLD
GSVLD

The STATUS page is for display purposes only. Valids can
not be modified via this page. Refer to figure 7.8 on the
following page.





-327-

m

m

m

m

m

m

STATUS

ADATA o K

IRS OK

DME3 B A D

DME 2 o K

I LS NOSEL

LOC

G/S

GPS

<1 /R INDEX

1/1

OK

OK

BAD

m

m

m

The Status Page

(figure 7.8)

PRECEDING PAGE. BLANK NOT FILMED



O



-329-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

STATPG

STATPG.FOR

SLOW

CDUEXC

CALL STATPG

PURPOSE:

The purpose of this CDU module is to display the status

of various onboard systems.

DESCRIPTION:

This module is called by the CDU executive CDUEXC. The

CDU page it manages is accessed by pressing the "STATUS>"

prompt on the INIT/REF INDEX page. It is exited by pressing

the "<INDEX" prompt on the STATUS page, or by pressing any
valid function key.

When a CDU input has been detected, the STATPG input

processing routine STNDRD_INP is called. The "<INDEX" prompt

is the only active line select key.

STATPG is called once per SLOW cycle. One CDU line is

output per STATPG call. Actual CDU output is handled via

calls to the FMTOUT routine.

GLOBAL REFERENCES:

VARIABLES

ADVAL DME2VD DME3VD GPNAVV GSVLD INAVV LOCFS LOCVLD PGINIT*

ARRAYS

ENTRY

FUNCTIONS AND SUBROUTINES

FMTOUT STNDRD INP

PR'ECET_._,_; PAGE _,._N_w nO; F.*LI_aE(_



-330-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

STNDRD INP

STATPG.FOR

SLOW

STATPG.FOR

CALL STNDRD INP

PURPOSE:

The purpose of this module is to process inputs for

CDU pages in which only the "<INDEX" prompt is active. If

any other line select key is pressed, a "DEAD KEY ERROR"

message is output. If data was entered on the scratch pad

prior to selecting "<INDEX", REPROG is called to save the

data before the CDU page request is processed.

VARIABLES

ERCODE* PGRQST*

ARRAYS

ENTRY

FUNCTIONS AND SUBROUTINES

REPROG



-331-

Section 7.9 THE APPROACHREFERENCEPAGE

The APPROACHREFERENCEpage of the CDU displays
information useful in TSRV approaches. It is accessed by
pressing the "APPROACH>" prompt on the INIT/REF INDEX page.
It is exited by pressing the "<INDEX" prompt on the APPROACH
REFERENCEpage, or by selecting a different CDU page from
the CDU panel. See figure 7.9 on the following page.

The approach reference parameters and their units that
are displayed on this page include:

PARAMETER UNITS

AIRCRAFT GROSSWEIGHT
REF AIRSPEEDS
GO-AROUNDEPR
HEADWINDSPEED
CROSSWINDSPEED
CROSSWINDDIRECTION
DESTINATION AIRPORT NAME
DESTINATION RUNWAYNUMBER
DESTINATION RUNWAYALTITUDE
DESTINATION RUNWAYLENGTH
ILS FREQUENCY
DESTINATION RUNWAYFINAL COURSE

LBS*I000
KTS

KTS
KTS

m

b

FT

FT

DEG

The parameters are updated once every 15 SLOW task

cycles. The APPROACH REFERENCE page is for display purposes

only. Parameters cannot be modified via this page.





-333-

m

m

m

m

m

APPROACH REF 1/1

GROSS WT FLAPS VREF

94. 0 I 5" 1 44K T
25" 141KT

GA EPR 30" 134KT

1 . 96 40 ° 130 K T
HDWD 16KT CRSSWD 7KTR

KWAL RwY 22
35 F T 8748 F T

F I NAL CR5

222"

<I/R INDEX

/

The Approach Page

(figure 7.9)

P,M]F.. _ 2_. INTi_NTIONALLY BLANI PRECEDING PAGE BLANK NOT FILMED





-335-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

APPREF

APPREF. FOR

SLOW

CDUEXC

CALL APPREF

PURPOSE:

The purpose of this CDU module is to display various

approach reference parameters.

DESCRIPTION:

This module is called by the CDU executive CDUEXC. The

CDU page it manages is accessed by pressing the "APPROACH>"

prompt on the INIT/REF INDEX page. It is exited by pressing

the "<INDEX" prompt on the APPROACH REFERENCE page, or by
hitting any valid function key.

Most of the parameters displayed on this page represent

global variables; however, the reference airspeeds must be

computed. This is accomplished by the VREFLU routine which

is called each time APPREF is called. The destination

information (airport name, runway number, altitude, length,

and final course direction) will not be displayed until a

destination runway has been entered into the active path

via the ROUTE page. Also the ILS frequency will only be

displayed if an ILS is available for the selected runway.

When a CDU input has been detected, a standard input

processing routine STNDRD_INP is called. The "<INDEX" prompt

is the only active line select key.

APPREF is called once per SLOW cycle. One CDU line is

output per APPREF call. Actual CDU output is handled via
calls to the FMTOUT routine.

GLOBAL REFERENCES:

VARIABLES

ACTCNT GAEPR HDGTRU PGINIT* WD WEIGHT WS

ARRAYS

AIRPTS ENTRY

FUNCTIONS AND SUBROUTINES

FMTOUT FRMFRQ GET CHAR GET REAL GET WORD OTS$CVT L TI

OTS$FLOAT SCOSD STNDRD INP VREFLU



-336-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

VREFLU
APPREF.FOR
SLOW
APPREF
CALL VREFLU(GW, V15, V25, V30, V40)

PURPOSE:
This routine is called to compute VREF reference

airspeeds for TSRV approaches.

DESCRIPTION:
VREF speeds are looked up in a local table and

interpolated according to aircraft gross weight for flap
positions of 15, 25, 30, and 40 degrees.

GLOBAL REFERENCES:none



-337-

Section 7.10 THE TAKEOFFREF PAGE

There are two CDU TAKEOFFREF pages. The first page is
used to enter, compute, and display takeoff reference
parameters. The second page handles the setup and execution
of the Takeoff Performance Monitoring System (TOPMS). See
figures 7.10 and 7.11.

The first page is accessed by pressing the "TAKEOFF>"
prompt on the PERFORMANCE/INITIALIZATION page or the
"<TAKEOFF" prompt on the INIT/REF INDEX page and is exited
by pressing its "<I/R INDEX" prompt or by selecting a
different CDU page via the CDU function keys. The second
page, or TOPMSpage, is accessed by hitting the "TOPMS>"
prompt on the first takeoff page and is exited by selecting
a different CDU page via the CDU function keys. Also, the
CDU NEXT and PREV keys can be used to toggle between the two
pages.

The following lists contain the parameters, associated
global variables, and units displayed on the two pages:

TAKEOFFREF PAGE 1 GLOBAL UNITS

OUTSIDE AIR TEMPERATURE
SELECTEDOUTSIDE AIR TEMPERATURE
TAKEOFF FLAPS POSITION
TAKEOFF EPR
AIRCRAFT GROSSWEIGHT
TAKEOFF REFERENCEV-SPEEDS

TAT DEG C
SOAT DEG C
TOFLPS DEG
TOEPR
WEIGHT LBS*I000
Vl, V2, VR KTS

TAKEOFFREF PAGE 2 GLOBAL UNITS

AIRCRAFT CENTEROF GRAVITY
RUNWAYFRICTION COEFFICIENT
TAKEOFFWIND SPEED
TAKEOFFWIND DIRECTION
RUNWAYOFFSET
RUNWAYLENGTH

CG
MURWY
TOWS KTS
TOWD DEG
TOPOS FT
TKFLEN FT

The display of parameters listed above are updated
once every 15 SLOWtask cycles.





-339-

mmm

m_

TAKEOFF REF

OAT

:5 2°F

SEL TEMP

F LAPS

5 °
TO EPR

1 95

1/2

130

132

137

GROSS

94.2

vl
KT

VR

KT

v2
KT

WT

<I/R INDEX TOPMS >

m

m

6

L"

The Takeoff Page
(#1)

(figure 7.10)

p______ rNI_NTII)NAttY BL_I





-341-

mmm

mmm

mmm

i

m

TAKEOFF REF 2/2

CG MU

O. 190 O. 015
W I ND S P W I N D D I R

17KT 145"
RWY OFFSET RWY LENGTH

200FT

<COMPUTE

The Takeoff Page
(#2)

(figure 7.11)

PJt_)f. _L/O INTENTIONALLY BLA_JI_, PRECEDING PhGE Bt.ANK NOT F!LMED





-343-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

TKOFF

TKOFF.FOR

SLOW

CDUEXC

CALL TKOFF

PURPOSE:

This module manages the two CDU TAKEOFF REF pages.

DESCRIPTION:

This module is called by the CDU executive CDUEXC when

the user has selected the TAKEOFF REF page. There are two

TAKEOFF REF pages. This module is responsible for

displaying the takeoff reference and TOPMS parameters on

those two pages, as well as accepting user inputs. When an

input has been detected TKOFF calls TKOFFINP (see

documentation below) which handles input processing.

TKOFF is called once per SLOW cycle. One CDU line is

output per TKOFF call. Actual CDU output is handled via
calls to the FMTOUT routine.

TAKEOFF REF PAGE 1

Various parameters relative to aircraft takeoff are

displayed on this page including:

OAT: The outside air temperature in degrees

Fahrenheit is always displayed and cannot be modified.

SEL TEMP: The user may enter a selected outside air

temperature (SOAT) in degrees Fahrenheit which will be

used in takeoff V-speed and EPR computations in place

of the default, OAT. Whenever a SOAT is entered, a

"DEKATED TAKEOFF" message will be displayed on the CDU.

FLAPS: The takoff flaps (TOFLPS) has a default value

of 5 degrees and can be modified.

TO EPR, V1, VR, V2: Takeoff EPR (TOEPR) and V-speeds

are computed by the EPRTO and MANUAL routines.

Aircraft gross weight must be entered on the

PERFORMANCE / INITIALIZATION page before these routines

can be called. The parameters are not computed every

TKOFF call. EPRTO and MANUAL are only called to update

the parameters when:

i) the aircraft gross weight GRWGT has been

entered on the PERFORMANCE INITIALIZATION page,



-344-

2) a SOAT is entered on this page,

3) a SOAT is deleted on this page (in which case

the default OAT is used), or

4) takeoff flaps TOFLPS is entered on this page.

V-speeds can also be manually entered and will

appear in small font. Manually entered V-speeds will

override those computed by MANUAL; however, if one of

the four items above occurs, new V-speeds will be

computed by MANUAL and displayed. Computed V-speeds

are displayed in large font.

GROSS WT: Aircraft gross weight is displayed, but can

not be modified on this page.

For more details on these parameters, see the documentation

for the TKOFFINP routine below.

TAKEOFF REF PAGE 2
_m

This page is used to initialize and compute TOPMS

parameters and enable the TOPMS display on the Navigation

Display (ND). The parameters displayed on this page are:

CG: Aircraft Center of Gravity (CG) is a user-defined

parameter.

WIND SP: Takeoff Wind Speed (TOWS) is a user-defined

parameter.

WIND DIR: Takeoff Wind Direction (TOWD) is a user-

defined parameter.

MU: Runway friction coefficient (MURWY) is a user-

defined parameter with a default value of 0.015.

RWY OFFSET: Runway offset (TOPOS) is a user-defined

parameter with default value of 200 feet.

RWY LENGTH:

parameter.

Runway length (TKFLEN) is a user-defined

For more details on inputting these parameters and

setting up for a TOPMS run, see the documentation for the

TKOFFINP routine below.



-345-

GLOBAL REFERENCES:

VARIABLES
ABLOFF ABROFF CG COMPFL* DISPST ENAFLG GWRESET*GWSET
HBAROMURWYNAV64K PGINIT* SOAT SOATFL TAT TKFLEN TOEPR
TOFLPS TOINDX TOPFLG TOPOSTOWDTOWSV1VIFLAG V2 V2FLAG
VR VRFLAG WEIGHT

ARRAYS
AIRPTS BOXESDASHESENTRY*

FUNCTIONSAND SUBROUTINES
CDU SMALL EPRTOFMTOUTMANUALOTS$CVTL TI OTS$FLOAT
TKOFFINP



-346-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

TKOFFINP
TKOFF.FOR
SLOW
TKOFF
CALL TKOFFINP

PURPOSE:
TKOFFINP handles user inputs for the two CDU TAKEOFF

REF pages.

DESCRIPTION:
This module is called from the TKOFF routine whenever

a user makes an input from one of the CDU TAKEOFFREF
pages.

TAKEOFF REF PAGE 1 INPUTS

When there is no data on the scratch pad, the only
Line Select Keys (LSK) that can be legally pressed are
the "<I/R INDEX" prompt (LSKL6) and "TOPMS>" prompt
(LSKR6). Hitting any other LSKs will result in a "NO
DATA" or "DEAD KEY ERROR" error message.

If there is data (except "DELETE") on the scratch pad

when an LSK is pressed, the following applies:

LSK-LI: The outside air temperature cannot be

modified. A "DEAD KEY ERROR" error message

will be displayed.

LSK-L2 : SOAT is entered in degrees Fahrenheit using
this LSK. Its value will be converted and

stored as degrees Centigrade. A "DERATED

TAKEOFF" message will be displayed near the

bottom of the page.

LSK-L3: Takeoff flaps TOFLPS are entered with this LSK.

Only values of i, 5, and 15 degrees will be

accepted. Inputting any other value results in

the output of an 'ILLEGAL ASSIGNMENT' error

message.

LSK-L4:

LSK-L5:

The takeoff EPR is computed by the EPRTO

routine and cannot be manually modified.

"DEAD KEY ERROR" error message will be

displayed.

A

No parameter. A "DEAD KEY ERROR" error message

will be displayed.



-347-

LSK-L6:

LSK-RI:

LSK-R2:

LSK-R3:

LSK-R4:

LSK-R5:

LSK-R6:

REPROGis called to save the data before the
CDU switches to the I/R INDEX page.

Vl can be manually entered and will override
the use and display of the V1 computed by the
MANUALroutine. It will be displayed in small
font. Before being accepted, the following
test must be passed:

100kt <= new VI <= VR.

If the test fails, the value is rejected and
an "ENTRY OUT OF RANGE" error message is
displayed.

VR can be manually entered and will override
the use and display of the VR computed by the
MANUALroutine. It will be displayed in small
font. Before being accepted, the following
test must be passed:

V1 <= new VR <= 161kt.

If the test fails, the value is rejected and
an "ENTRY OUT OF RANGE" error message is
displayed.

V2 can be manually entered and will override
the use and display of the V2 computed by the
MANUALroutine. It will be displayed in small
font. Before being accepted, the following
test must be passed:

vR <= new v2 <= 163kt.

If the test fails, the value is rejected and
an "ENTRY OUT OF RANGE" error message is
displayed.

The aircraft gross weight cannot be modified
on this page. A "DEAD KEY ERROR" error message
will be displayed.

No parameter. A "DEAD KEY ERROR" error message
will be displayed.

This is the "TOPMS>" prompt. Data is not
allowed. A "DEAD KEY ERROR" error message
will be displayed.



-348-

When TKOFFINP detects a deletion (data input is
"DELETE") while this page is active, the PROCDEL routine
(see documentation below) is called to handle it. Only
the SOAT and V-speeds can be deleted.

TAKEOFFREF PAGE 2 INPUTS

This page is used to setup and enable a TOPMSrun.
The following list contains the details for initializing
the TOPMSparameters:

LSK-LI: Aircraft center of gravity CG is entered at
this LSK. Its value must be greater than 0.0 and
less than or equal to 0.05 to be accepted. If it is
not within this range, the entry will be rejected
and an "ENTRY OUT OF RANGE" message will be displayed.

LSK-L2: Takeoff wind speed TOWDis entered here. If
the entry is not between 0.0 and 50.0 inclusive, it
will rejected and an "ENTRY OUT OF RANGE" message will
be output.

LSK-L3: Takeoff runway offset TOPOSis entered here.
TOPOShas a default value of 200 feet.

LSK-RI: The runway friction coefficient MURWYhas a
range of 0.005 to 0.04. Any entry outside this
range will result in an "ENTRY OUT OF RANGE" message.

LSK-R2: Takeoff wind direction TOWDmust be a number
between 0.0 and 360.0 inclusive or an 'ENTRY OUT OF
RANGE' message will be output.

LSK-R3: The runway length TKFLEN can be entered at
this LSK.

Pressing any of the above LSKs with no data on the
scratch pad will result in a "NO DATA" error message. All
other LSKs on this page are dead keys except for LSKL6 and
LSKR6 which only become active when all the TOPMSparameters
have been properly initialized (see next section).

No deletions are allowed on this page. Attempts at
deleting any parameters will result in the output of an
"INVALID DELETE" message.

For both pages, note that if any data entry cannot be
successfully converted from character to floating point
format, a "BAD DATA FORMAT" message will appear.



-349-

ENABLING TOPMS

Some preconditions must be met before the TOPMS
computations can be performed. TOWS, TOWD, and CG must be
entered, the aircraft ground speed must be less than 64
knots, and the aircraft gross weight must have been entered
on the PERFORMANCEINITIALIZATION PAGE. In addition, an
origin runway must have been entered on the ROUTEpage.
If the runway has not been entered and the other precon-
ditions have been met, an "ENTER ORIGIN RUNWAY"message will
appear on the CDU in reverse video. When the runway has
been entered and the preconditions met, a "<COMPUTE" prompt
will appear at LSKL6.

Pressing the "<COMPUTE"prompt causes the routine
TOSTBP to compute the takeoff stabilizer position TOSTAB.
The takeoff index variable TOINDX will be set to 1 allowing
the TOPMSsoftware in the Displays VAX to run. An "<ENABLE"
prompt will then replace the "<COMPUTE"prompt and a
"REJECT>" prompt will also appear alongside.

Pressing the "<ENABLE" prompt causes it to disappear.
TOINDX will be set to 2, enabling the TOPMSdisplay format
to replace the current format on the ND.

Pressing the "REJECT>" prompt causes TOINDX to be
reset to zero and the "<COMPUTE" prompt to reappear. At
this time, parameters on either TAKEOFFREF pages can be
altered for the next TOPMScomputations, if so desired.

After completing a takeoff attempt, CDUFST
reinitializes SOAT and TOINDX. When this is detected by
the TKOFF module, the SOAT and V-speeds on the CDU are
replaced with dashes. At this time, the takeoff parameters
can be appropriately setup for the next takeoff attempt.

GLOBAL REFERENCES:

VARIABLES
CG* COMPFL* DISPST ENAFLG ERCODE* INDAT MURWY*NAV64K
PGRQST* SOAT* SOATFL* TKFLEN* TOFLPS* TOINDX* TOPFLG TOPOS*
TOSTAB TOWD* TOWS*Vl VIFLAG* V2* V2FLAG* VR VRFLAG*

ARRAYS
ENTRY

FUNCTIONS AND SUBROUTINES
DEL IN OTS$CVTTI L OTS$CVTT F PROCDEL REPROGTOSTBP



-350-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

PROCDEL
TKOFF.FOR
SLOW
TKOFFINP
CALL PROCDEL(LSK)

PURPOSE:
This routine processes "DELETE" data entries.

DESCRIPTION:
This routine is called by TKOFFINP whenever a "DELETE"

is attempted. The action taken is dependent upon the value
of the LSK parameter and the page number. Attempting to
delete a TOPMSparameter on page 2 will result in an
"INVALID DELETE" error message.

On the first TAKEOFFREF page, deleting the SOAT
parameter will cause TKOFF to call MANUALto recompute the
V-speeds with the OAT (TAT) as the temperature parameter.
Any user-entered V-speeds will be replaced with the new
computed V-speeds. Deleting the SOAT when one has not been
entered will result in an "INVALID DELETE" error. Deleting a
user-entered V-speed causes the TKOFF routine to call MANUAL
to recompute the V-speed. The new computed V-speed will be
subsequently used and displayed. Deleting a computed V-speed
will result in an "INVALID DELETE" error. Also, deleting
the SOAT or V-speeds will cause TKOFF to call EPRTOto
recompute the takeoff EPR (TOEPR).

On page I, it is legal to have "DELETE" on the scratch
pad when switching to the I/R INDEX page via LSKL6. REPROG
will be called to save the data prior to the switch.
Attempts to delete any other paramters on this page will
result in a "DEAD KEY" error.

GLOBAL REFERENCES:

VARIABLES
COMPFL* ERCODE*PGRQST* SOATFL* TOPFLGVIFLAG* V2FLAG*
VRFLAG*

FUNCTIONS AND SUBROUTINES
REPROG



-351-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

MANUAL
TKOFF.FOR
SLOW
TKOFF
CALL MANUAL(PALT, TEMP, FLAPS, W,

Vl, VR, V2)

PURPOSE:
The purpose of this routine is to compute the takeoff

V-speeds Vl, VR, and V2, given pressure altitude (PALT),
ambient air temperature (TEMP), takeoff flaps position
(FLAPS), and aircraft gross weight (W).

DESCRIPTION:
This routine is called by TKOFF whenever new computed

V-speeds are required. Conditions for calling this routine
are described in the description for the module TKOFF. The
V-speeds are basically derived through the interpolation of
a table look-up, given the values of the input parameters.

GLOBAL REFERENCES:

FUNCTIONSAND SUBROUTINES
INTRP



-352-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

INTRP

TKOFF.FOR

SLOW

MANUAL

INTRP(A, X, Y)

PURPOSE:

This function returns an interpolation of the given
inputs A, X, and Y.

DESCRIPTION:

The intepolation function is:

INTRP = FLOAT(INT(X - A * (X - Y) + 0.5))

GLOBAL REFERENCES: none



-353-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

EPRT0
TKOFF.FOR
SLOW
TKOFF
CALL EPRTO(TEMP, PALT, ABOFF)

PURPOSE:
The purpose of this function is to return a takeoff

EPR value.

DESCRIPTION:
This function is called by TKOFF. The EPR computed by

this function is one recommended by the B-737 flight manual
given the ambient air temperature (TEMP), pressure altitude
(PALT), and airbleed status (ABOFF). It is based on the

tabulation on page 3 (4B-I) of the 737-ILT flight manual
dated January 5, 1970.



-354-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

TOSTBP

TKOFF.FOR

SLOW

TKOFF

CALL TOSTBP(CG, SP)

PURPOSE:

This routine computes the nominal takeoff stabilizer

position.

DESCRIPTION:

This routine is called by TKOFF. The takeoff

stabilizer position is computed according to the aircraft

center of gravity (CG).

GLOBAL REFERENCES: none



-355-

Section 7.11 THE GPSS PAGE

This CDU page provides information about the Global

Positioning Satellite System (GPSS) to the flight crew.

Most of the page consists of status information, however

GPS navigation may be selected or deselected on the page.
See figure 7.12 on the following page.





-357-

g

i

GPSS SELECT

OPSS NAV STATUS

8PSS LAND STATUS

SATELLITES TRACKED

D I FFERENTI AL MODE

HDOP 2.9 VDOP

OPS LND
< I/R INDEX OPS NAV

1/1

OK

BAD

5
OFF

10.4

OFF>
OFF>

m

The GPSS Page

(flgure 7.12)

ff.I__INTENTIONALLY B_ttt

c-¢'
PRECEDING PAGE BLAi_K NOT FILMED





-359-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

GPSPG

GPSPG.FOR

SLOW

SELECT

CALL GPSPG

PURPOSE:

To generate the GPS page of the CDU.

DESCRIPTION:

This CDU page provides information about the Global

Positioning Satelite System (GPSS) to the flight crew. The

page is accessed via the INIT/REF index page. This module

serves as the entry point to the GPS page software. CDU

keyboard entries are handled directly, while output data

generation is accomplished through calls to SHOW GPS.

Only function entries are valid inputs on the GPS page.
Of the 12 line select keys, only LSK-L6 and LSK-R6 are

enabled. Selection and deselection of GPS navigation is

made through LSK-R6. Return to the INIT/REF index page is
made using LSK-L6.

Updating of the entire GPS display is performed in

eight consecutive calls to GPSPG. The module SHOW GPS is

called with an index indicating the current place Tn the
update cycle.

GLOBAL REFERENCES:

VARIABLES

ERCODE* GPLND* GPNAV PGINIT* PGRQST*

ARRAYS

ENTRY*

FUNCTIONS AND SUBROUTINES

SHOW GPS



-360-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

SHOWGPS
GPSPG.FOR
SLOW
GPSPG
CALL SHOWGPS(PASS)

PURPOSE:
To display lines of text on the CDU GPSS page.

DESCRIPTION:
This procedure updates one of eight CDU display lines

each time it is called. See figure 7.11.1 for the format
of the GPSS page. The calling parameter contains the index
(0-7) of which line to update. The following chart shows
the data formatted for the various index values.

0 Title line
1 GPSS navigation status line (uses GPNAVV)
2 GPSS land status line (uses GPLNDV)
3 satellites tracked line (uses SATINVW)
4 differential mode line (uses DIFMOD)
5 VDOP and HDOP line (uses GPHDOPand GPVDOP)
6 GPS land select line (uses GPNAV)
7 GPS NAV select line (uses GPNAV)

Note that the values of HDOPand VDOP are dashed out if
GPS navigation is not valid (GPNAVV).

GLOBAL REFERENCES:

VARIABLES
DIFMOD GPHDOPGPLNDVGPNAVGPNAVVGPVDOPSATINVW

FUNCTIONSAND SUBROUTINES
FMTOUTOTS$CVT L TU OTS$FLOAT



-361-

Section 8.0 THE PHASE OF FLIGHT PAGES

There are three CDU phase of flight pages: CLIMB,
CRUISE, and DESCENT. Each page is used for displaying
and altering parameters useful in its associated flight
segment. See figures 8.0, 8.1, and 8.2 for typical
examples of these pages.

Each page has an associated CDU key for access.
Automatic switching from one flight page to another will
occur under the appropriate conditions described in later
sections. Exiting a page can either be accomplished by
pressing its "<LEGS" page prompt or by selecting a different
CDU page via the CDU panel.

Following are the parameters and if applicable, its
associated global variable, and units for the pages:

CLIMB PAGE GLOBAL UNITS

CRUISE ALTITUDE
OPTIMUMALTITUDE
TARGET SPEED
TARGETMACH
RESTRICTED SPEED
RESTRICTEDALTITUDE
CLIMB EPR

CRZALT FT
OPTALT FT
CLB SPD KT
CLB MACH --
REST SPD KT
REST--ALT FT
MCLEPR --

CRUISE PAGE GLOBAL UNITS

CRUISE ALTITUDE
OPTIMUMALTITUDE
TARGETMACH
MAX CRUISE EPR
DIST TO TOP OF DESCENTWPT
ETA TO TOP OF DESCENTWPT

CRZALT FT
OPTALT FT
CRZ MACH --

MCREPR --

computed locally NM

computed locally HR:SEC

DESCENT PAGE GLOBAL UNITS

ACTIVE WAYPOINT NAME

ACTIVE WAYPOINT ALTITUDE

TARGET SPEED OF LAST WPT

TARGET SPEED OF ACTIVE WPT

DISTANCE TO ACTIVE WAYPOINT

END OF DESCENT WPT ALT

AIRCRAFT ALTITUDE

ALTITUDE ERROR

WPT ACT (TOWPT) .NAME

WPT ACT (TOWPT) .ALT

WPT ACT (TOWPT-I) .IAS

WPT ACT (TOWPT) . IAS

DTOGO

WPT ACT (MODCNT) .ALT

ALTCOR

HER

KT

KT

NM

FT

FT

FT



-362-

All three pages will display the following information
when 4D guidance is possible (GUID4D on) and an RTA exists
for a waypoint along the unflown portion of the active path:

PARAMETER GLOBAL UNITS

DISTANCE TO RTA WAYPOINT
RTA WAYPOINTNAME
RTA TIME
TIME ERROR
GROUNDSPEED
GROUNDSPEED ERROR

computed locally NM
WPT_ACT(RTA_PTR).NAME --
WPT_ACT(RTA_PTR).ETA HR:SEC
TIMERR HR:SEC
GS KT
GSE KT

Because the CLIMB, CRUISE, and DESCENTpages contain
numerous instances where I/O was identical, the code to
handle the I/O was incorporated into one routine, namely
FLT TYPE. In the few instances where I/O is different
from page to page, the common variable PAGENMis used
by FLT TYPE to distinguish which page is active and take
the appropriate action.

There are three main routines: CLIMB, CRUISE, and
DESCENT. When called by the CDU executive, each routine
sets PAGENMto a specific value and then calls FLT TYPE.

Thus,

* if the executive calls CLIMB, CLIMB sets PAGENM
to 1 and then calls FLT TYPE

* if the executive calls CRUISE, CRUISE sets PAGENM
to 2 and then calls FLT TYPE

* if the executive calls DESCENT, DESCENTsets
PAGENMto 3 and then calls FLT TYPE



-363-

ACT RTA CL I MB I/I

CRZ ALT

FL300
TGT SPD

270-> .730
SPD REST

Mili]l 10000

OPT ALT

EPR

1. 876

14NM TO RTA

RTA 1 100:O0

THE R " 0 : O0 : 00

WFBBF
GS 200KT

GSE OKT

<LEG5

The Climb Page

(figure 8.0)





-365-

m

ACT RTA CRUI SE III

CRZ ALT

FL300
TGT SPD

•730
TO TID

2 NM

OPT ALT

EPR

1. 725
ETA T/D

1004:04

RTA

TMER

14NM TO RTA

1100:00

÷0:00:00

WFBBF
GS 200KT

GSE OKT

<LEGS

The Cruise Page

(figure 8.1)

__ INTENTIONALLY BI._tN PRECEDING PAGE BLA,N4K NGT F_LMED





-367-

ACT RTA
II

DESCENT I/I

TGT ALT

4000/WFBBB
TGT SPD

4000/4000
t 0 WFBBB

I 8NM

E/D ALT

35 FT

ALT

4000 FT

ALT ER

0

14NM TO RTA

RTA 1100:00

TMER + O: 00:O0

WFBBF
GS 200KT

GSE OKT

<LEGS

The Descent Page

(figure 8.2)

PA__ IN_NTION_ttY _AI

PRECED'",_ I='_E BI.A._tK NOT F!LI_.ED





-369-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

CLIMB

CLIMB.FOR

SLOW

CDUEXC

CALL CLIMB

PURPOSE:

The CLIMB routine is responsible for setting up and

calling the FLT TYPE routine which handles all CLIMB I/O.

DESCRIPTION:

The CLIMB routine sets the common active flight page

variable PAGENM to 1 and then calls FLT TYPE. CLIMB is

called once per SLOW task cycle.

GLOBAL REFERENCES:

VARIABLES

PAGENM*

FUNCTIONS AND SUBROUTINES

FLT TYPE

"7,

pRECEDING PAGE BLAIN"I( NOT FILMED



-370-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

CRUISE

CRUISE.FOR

SLOW

CDUEXC

CALL CRUISE

PURPOSE:

The CRUISE routine is responsible for setting up and

calling the FLT_TYPE routine which handles all CRUISE I/O.

DESCRIPTION:

The CRUISE routine sets the common active flight page

variable PAGENM to 2 and then calls FLT TYPE. CRUISE is

called once per SLOW task cycle.

GLOBAL REFERENCES:

VARIABLES

PAGENM*

FUNCTIONS AND SUBROUTINES

FLT TYPE



-371-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

DESCENT
DESCENT.FOR
SLOW
CDUEXC
CALL DESCENT

PURPOSE:
The DESCENTroutine is responsible for setting up and

calling the FLT TYPE routine which handles all DESCENTI/O.

DESCRIPTION:
The DESCENTroutine sets the common active flight page

variable PAGENMto 3 and then calls FLT TYPE. DESCENTis
called once per SLOWtask cycle.

GLOBAL REFERENCES:

VARIABLES
PAGENM*

FUNCTIONS AND SUBROUTINES
FLT TYPE



-372-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

FLT TYPE
CLIMB.FOR
SLOW
CLIMB, CRUISE, DESCENT
CALL FLT TYPE

PURPOSE:
This routine manages the I/O for the CDU CLIMB, CRUISE,

and DESCENTphase of flight pages.

DESCRIPTION:
FLT TYPE is called by the CLIMB, CRUISE, and DESCENT

CDU routTnes to display information relative to the current
phase of flight. Most of the parameters represent global
variables, but a couple are computed locally. Every time
FLT TYPE is called it calls FIND TOD to compute the top of
descent waypoint if a flight plan has been entered (GUID2D
on). It also calls the SPEEDBroutine to set the target
speeds and compute the speedbug for the Primary Flight
Display (PFD). The speedbug is also the active speed
command and will be displayed in reverse video. FLT TYPE
also calls CHNGPG to see if the conditions for an automatic
phase of flight--page change exist.

Many of the parameters on these pages allow for user
inputs. When an input is detected, FLT_TYPE calls
FLT TYPE INP to handle it.

-- The--title line of each page contains the flight phase,
guidance mode, and plan mode. The flight phases are of
course CLIMB, CRUISE, and DESCENT. If 4D guidance is
active (GUID4D on), then the title will contain "RTA";
otherwise it will contain "ECON". When the current plan
mode is "active" (PMODE> i), the string "ACT" will also be
displayed. For example, if PMODE= 2, GUID4D is set, and
the CLIMB page is active, the title will read "ACT RTA
CLIMB".

One CDU line is output per FLT TYPE call. Actual CDU
output is handled via calls to the FMTOUTroutine.

GLOBAL REFERENCES:

VARIABLES
ALTCOR CRZALT DFLKEY DTOGOFLKEY GSFPSGUID2D GUID4D HER
MCLEPRMCREPRMODCNTOPTALT PAGENMPGINIT* PMODEREST ALT
REST SPD REVERSRFLKEY RTA PTR TGT MACHTGT SPD TIME TOWPT

ARRAYS
BOXESDASHESENTRY*



-373-

RECORDARRAYS
WPTACT

FUNCTIONS AND SUBROUTINES
CDU SMALL CHNGPG FIND TOD FLT TYPE INP FMTOUTFMTTIM
OTS_CVT L TI OTS$FLOAT--PROGLN--RTA L--N10RTA LN8 RTA LN9
SPEEDB ....



-374-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

FLT TYPE INP
CLIMB.FOR
SLOW
FLT TYPE
CALL FLT TYPE INP

PURPOSE:
This routine handles all user inputs for the CLIMB,

CRUISE, and DESCENTCDU pages.

DESCRIPTION:
FLT TYPE INP is called by FLT TYPE whenever a user

input is detected on the CDU. There are two basic types of
CDU inputs handled by this module -- i) Blank Scratch Pad +
Line Select Key (LSK), and 2) Scratch Pad Data + Line Select
Key.

If there is no data on the scratch pad when an LSK is
pressed, the following applies:

LSK-LI: If the CLIMB or CRUISE page is active, PROGLN is
called to program the scratch pad with the Value
of the cruise altitude (CRZALT). If the DESCENT
page is active, the 'TO' waypoint altitude
(WPT_ACT(TOWPT).ALT) is put on the scratch pad.

LSK-L6: The "<LEGS" prompt was pressed and the LEGS page
becomes the active CDU page.

OTHERS: If data was expected for the key, a "NO DATA"
error message will be displayed; otherwise, a
"DEAD KEY ERROR" error message will be output.

If there is data on the scratch pad prior to pressing
an LSK, the following applies:

LSK-LI: Altitudes are entered with this key. For the
CLIMB and CRUISE pages, the altitude is the
cruise altitude (CRZALT). If executed, the value
of CRZALT will be assigned to WPT ACT().ALT for

all cruise waypoints in the path through a call

to the NEWCRZ routine. For the DESCENT page,

the entered altitude will be assigned to

WPT ACT(TOWPT).ALT, WPT ACT(TOWPT).ALTF will be

set7 and DEMODE is called with the AUTOEX

parameter so that an automatic change to the

waypoint buffer will occur. The altitudes can be

entered in a number of different formats:



-375-

LSK-L3:

I) 0000 <= data <= 0999 (4 chars);

Altitude is displayed as a number between 0

and 999.

2) 1000 <= data <= 18000;

Altitude is displayed as entered.

3) 1 <= data <= 400 (I to 3 chars);

Altitude is displayed as (data * 100).

4) 18000 <= data <= 40000;

Altitude is displayed as a flight level.

(e.g. if data = 32000, it will be displayed

as FL320)

If data < 0, data > 400 (3 chars), or

data > 40000, a "DATA OUT OF RANGE" message will

be displayed on the scratch pad.

The altitude value is determined by calling the

ALTX function. ALTX decodes the input data

using the format rules above.

This key is used to input the restricted airspeed

and altitude on the CLIMB page. It is a dead key

on the CRUISE and DESCENT pages. Valid entries

can be made as follows:

l) if 150 kts <= data <= 350 kts, assign the

value to REST SPD. The data in this case

may be followed by a slash "/".

2) if the data is a slash "/" followed by a

number, decode it as an altitude (regular or

flight level format) and assign it to

REST ALT.

3) if the data is a number followed by a slash

"/" and another number, decode and assign to

REST SPD and REST ALT respectively.

When a restricted speed is being entered and

150 kts <= REST SPD <= 350 kts is not true,

the inputs will be rejected and a "DATA OUT

OF RANGE" error message will be output. The

same restrictions for entering an altitude

described for LSKLI apply here.



-376-

LSK-L6: REPROGis called to save the data before the LEGS
page change.

OTHERS: Any other data entry results in a "DEAD KEY
ERROR" error message.

GLOBAL REFERENCES:

VARIABLES
CRZALT DFLKEY* ERCODE* FLKEY* GUID2D INDAT PAGENMPGRQST*
PMODEREST ALT* REST SPD* RFLKEY* TOWPT

ARRAYS
ENTRY

RECORDARRAYS
WPT ACT WPT MOD*

FUNCTIONS AND SUBROUTINES
ALTX DEL IN DEMODENEWCRZOTS$CVTT F PROGLN REPROG



-377-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

FIND TOD
CLIMB.FOR
SLOW
FLT TYPE
CALL FIND_TOD(TOD_INDX)

PURPOSE:
The purpose of this routine is to find the top of

descent waypoint for the active flight path.

DESCRIPTION:
This routine is called by FLT TYPE every time it is

called. It searches through the active waypoint buffer
WPT_ACT for the first waypoint with a descent phase. The
position prior to this waypoint in the buffer is then
assigned to the top of descent variable TOD INDX.

GLOBAL REFERENCES:

VARIABLES
MODCNT

RECORDARRAYS
WPT ACT



-378-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

CHNGPG
CLIMB.FOR

SLOW

FLT TYPE

CALL CHNG_PG(CRZALT, TOD_INDX)

PURPOSE:

This routine checks the conditions for automatic

phase of flight page changes.

DESCRIPTION:

CHNG PG is called by FLT TYPE every pass when the

plan mode is active (PMODE = 3). If a new cruise altitude

has been entered on the CLIMB or CRUISE pages, the

following checks are made:

I) if CLIMB or CRUISE page active and CRZALT <=

ALTCOR - 200 feet, then make an automatic switch to

the DESCENT page.

2) if CLIMB page is active and CRZALT < ALTCOR + 200

feet and CRZALT > ALTCOR - 200 feet, then make an

automatic switch to the CRUISE page.

3) if the CRUISE page is active and CRZALT >=

ALTCOR + 200 feet, then make an automatic switch to

the CLIMB page.

In addition, a page change to the CRUISE page will

occur when the aircraft is within 0.5 nm of the first cruise

waypoint. Likewise, when the aircraft is within 0.5 nm

of reaching the waypoint following the top of descent

waypoint, a switch to the DESCENT page will occur.

GLOBAL REFERENCES:

VARIABLES

ACTCNT ALTCOR CRZALT CRZCHNG* DESCHNG* DTOGO PAGENM

PGRQST* TOWPT

RECORD ARRAYS

WPT ACT



-379-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

SPEEDB
CLIMB.FOR
SLOW
FLT TYPE
CALL SPEEDB

PURPOSE:
The purpose of this routine is to set the target speed

and mach and then set the speedbug for the Primary Flight
Display (PFD).

DESCRIPTION:
FLT TYPE calls SPEEDBevery pass. If 2D guidance is

not possible, the target speed and mach are set to zero;
otherwise they are set as follows:

I) If the CLIMB page is active, the target speed and

mach are set to the global climb variables CLB SPD

and CLB MACH respectively.

2) If the CRUISE page is active, the target speed will

be zero and the target mach will be the global
cruise mach CRZ MACH.

3) If #i and #2 are not true and the active 'TO' waypoint

speed flag (WPT ACT(TOWPT).SPDF) is not zero, the

target speed is set to the IAS of the current

waypoint (WPT_ACT(TOWPT - I).IAS) and the target

mach is set to the 'TO' waypoint IAS

(WPT ACT(TOWPT).IAS).

Before the speedbug is set, the commanded airspeed

COMIAS is computed as:

COMIAS = 661.5*SQRT(5.*(((I.+DELTA*(((I.+0.2*M*M)**3.5)

-i))**(2./7.))-I.))

where DELTA is (I-6.87535E-06*HBARO)**5.2561 and

M is the target mach.

The speed bug and active speed command (displayed in

reverse video on the CDU) are set by the following
conditions:

i) if HBARO < restricted altitude (REST ALT), then

SPDBUG = resticted airspeed (REST_SPD) and the
active speed command will be REST SPD.



-380-

2) if HBARO >= REST ALT and the target airspeed
<= COMIAS, then SPDBUG = target speed and

the active speed command will be the target speed.

3) if neither #I or #2 is true, then SPDBUG = COMIAS

and the active speed command will be the target
mach.

GLOBAL REFERENCES:

VARIABLES

CLB MACH CLB SPD CRZ MACH GUID2D HBARO PAGENM REST ALT
REST SPD REVERS* SPDBUG* TGT MACH TGT SPD TOWPT

RECORD ARRAYS

WPT ACT

FUNCTIONS AND SUBROUTINES

MTH$SQRT



-381-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

PROG LN

CLIMB.FOR

SLOW

FLT TYPE INP

CALL PROG LN(VAR, LINE)

PURPOSE:

This routine outputs the string VAR to the CDU line
whose value is LINE.

DESCRIPTION:

The CDU line is programmed starting with the first

non-blank character in VAR through a call to FMTOUT.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES

FMTOUT OTS$CVT L TI



-382-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

RTA LN8
CLIMB.FOR
SLOW
FLT TYPE, PROGRESS
CALL RTA LN8

PURPOSE:
This routine outputs line #8 of the CLIMB, CRUISE,

and DESCENTpages.

DESCRIPTION:
If 4D guidance is possible (GUID4D on), RTA LN8

computes and displays the distance in nautical mTles to
the RTA waypoint. The RTA waypoint name is also displayed
on this line. If the RTA waypoint has already been passed,
a blank line is output. If 4D guidance is not possible the
line will read "NO RTA ASSIGNED". Actual CDU output is
handled through calls to FMTOUT.

GLOBAL REFERENCES:

VARIABLES
DTOGOGUID4D RTA PTR TOWPT

RECORDARRAYS
WPT ACT

FUNCTIONS AND SUBROUTINES
CDU SMALL FMTOUTOTS$CVTL TI



-383-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

RTA LN9
CLIMB.FOR
SLOW
FLT TYPE, PROGRESS
CALL RTA LN9

PURPOSE:
This routine outputs line 9 of the CLIMB, CRUISE,

and DESCENTpages.

DESCRIPTION:
If 4D guidance is possible (GUID4D on), RTA LN9

displays the RTA input time (WPTACT(RTA PTR).ETA) and the
aircraft ground speed (GS); otherwise, a blank line is
output. Actual CDU output is handled through calls to
FMTOUT.

GLOBAL REFERENCES:

VARIABLES
GS GUID4D RTA PTR

RECORDARRAYS
WPTACT

FUNCTIONS AND SUBROUTINES
CDU SMALL FMTOUTFMTTIM OTS$CVTL TI



-384-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:

CALLING SEQUENCE:

RTA LNI0

CLIMB.FOR

SLOW

FLT_TYPE, PROGRESS
CALL RTA LNI0

PURPOSE:

This routine outputs line I0 of the CLIMB, CRUISE,

and DESCENT pages.

DESCRIPTION:

If 4D guidance is possible (GUID4D on), RTA LNI0

displays the RTA time error (TIMERR) and the air_raft ground

speed error (GSE); otherwise, a blank line is output.

Actual CDU output is handled through calls to FMTOUT.

GLOBAL REFERENCES:

VARIABLES

GSE GUID4D TIMERR

FUNCTIONS AND SUBROUTINES

CDU SMALL FMTOUT FMTTIM OTS$CVT L TI
m



-385-

Section 9.0 THE FIX PAGE

The purpose of the FIX CDU page is to provide bearing
and distance information from an entered fix to the current

aircraft position.

There are two fix pages with identical formats and

functions. They are accessed by pressing the FIX function

key and exited by selecting another CDU page via the CDU

panel.

A fix may be a navaid, waypoint, or airport, as long as

it exists in the aircraft's navigation database. The

distance (nm) and magnetic bearing (deg) from the fix to the

aircraft are computed, displayed, and continually updated

once a fix has been entered. Up to three radials from each

fix can be entered. The distance from the fix along the

radials to the nearest intercept point on a straight leg of

the unflown active path and the altitude (ft) at that

intercept point are computed once at the time of the radial

entry. The aircraft distance to go (nm) along the path to

the intercept point is also continually updated and

displayed. If a radial does not have an intercept point,

these parameters are not computed and only the radial value

is displayed. The frequency of the fix updates is once per

14 SLOW task cycles.

A special radial called an abeam can also be displayed.

This abeam radial is one that intersects a straight leg of

the unflown portion of the active path perpindicularly. If

there are more than one abeam radials, the one with the

shortest distance between the fix and its intercept point

will be the one displayed. If no abeam radials exist for

a given fix, an error message will alert the user. A

reference circle can also be displayed by entering its

radius (nm) on the fix page.

In addition to the CDU display, the Navigation Display

(ND) gives the user a graphical depiction of the fix data.

Fixes, radials, and reference circles will be drawn in

green. Figures 9.0 and 9.1 on the following pages show a

typical CDU Fix page with the corresponding Map display

symbology.





-387-

=ram

FIX INFO

FIX

COMBC
RADI D I

352

RAD/Dt ST FR

184" / 236NM

ST DTG

3001 3NM 4

ABEAM

2601
C I RC LE

I I i

2NM 2

112

ALT

2152

3165

ERASE>

mmm

mm_

The Fix Page

(figure 9.0)

II_IE_o INTENTI_NAtLY _t_ffiI_
PRIECEDING PAGE B!,.AN_ NOT F_LMED





-389-

N

Nav Display Fix Example

(figure 9.1)

P,/t_E.__._. fNTENTr0NALLY BI_Am PRECEDING PAGE BLANK NOT FILMED





-391-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

FIX INFO

FIX?FOR

SLOW

CDUEXC

CALL FIX INFO

PURPOSE:

FIX INFO is the main FIX routine.

DESCRIPTION:

When a user has selected the CDU FIX page, the CDU

executive CDUEXC calls FIX INFO once per SLOW task cycle.

Fix information is represented in a FORTRAN structure

declared in the file FIXCOM. INC. This structure contains:

FIX(PG) .ADDR: AADCOM address of the fix

FIX(PG) .NAME: fix name

FIX(PG) .NAME LEN: number of chars in fix name

FIX(PG) .TYPE: fix type (nvd=l, wpt=2, apt=3)

FIX(PG) .BRG: mag bearing from fix to aircraft (deg)

FIX(PG) .CIRCLE: fix circle radius size (nm)

FIX(PG) .DIST: distance from fix to aircraft (nm)

FIX(PG) .LAT: fix latitude (deg)

FIX(PG) .LON: fix longitude (deg)

FIX(PG) .MAG: fix magnetic variation (deg)

FIX(PG) .SET: boolean set when a fix has been entered

FIX(PG) .RAD (I) .SET: conveys a radial has been entered

FIX(PG) .PAD(I) .INDEX: path segment number containing

intercept point (IP)

FIX(PG) .RAD(I).VAL: radial value (deg)

FIX(PG) .RAD(I) .IP LAT:

FIX(PG) .RAD(I).IP LON:

FIX(PG) .RAD(I).IP ALT:

FIX(PG) .RAD(I) .IP DIST:

FIX(PG) .RAD(I) .IP DTG:

radial IP latitude (deg)

radial IP longitude (deg)

radial IP programmed alt (ft)

distance from fix to IP (nm)

aircraft distance to go along

path to IP (nm)

where PG is the fix page number (I or 2) and I is the radial

number (i, 2, 3, or abeam = 4).

If an input has been made and a fix has not yet been

entered on the page, the entry must be either a fix at

LSKLI or a page change request using the NEXT or PREV CDU

panel keys. FIX INP is called if a fix was entered and

CH FIX PG is calTed to handle a page change. Any other

inputs will result in the output of an error message.

_Ixll_. __c_..) _luTF_T,qNAIIY BI_NI PR'ECEBING FAP__ BLANK NOT FILMEP



-392-

After any inputs are processed, POS INFO is called

to compute the distance and magnetic bearing from the

fix(es) to the current aircraft position. Next, if 2D

guidance is possible (GUID2D on), the aircraft distance

to go along the path to all existing radial intercept points

is computed by COMP IP DTG. FIX DISP is then called to set

the global variables in the global section DISNAV, needed

for displaying fix information on the ND.

Finally, CDU line outputs are performed. All output

lines are handled in this routine except for radial output

lines which are managed by calls to OUT RAD. A different

CDU line is output on each FIX INFO call. All actual CDU

output is handled through calls to FMTOUT.

Fixes are erased from the CDU and ND by pressing the

"ERASE>" key or by entering "DELETE" and pressing the fix

name line select key (LSKLI).

GLOBAL REFERENCES:

VARIABLES

ERCODE* GUID2D LAT LON PG PGINIT*

ARRAYS

BOXES DASHES ENTRY*

RECORD ARRAYS

FIX

FUNCTIONS AND SUBROUTINES

CDU SMALL CH FIX PG COMP IP DTG DEL FIX DEL IN FIX DISP

FIX--INP FMTOUT OTS$CVT L--TI--OTS$FLOAT OUT RAD POS I--NFO



-393-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

OUT RAD
FIX.FOR
SLOW
FIX INFO
CALL OUT RAD(LINE, INDEX)

PURPOSE:
This routine is called by the main fix routine

FIX INFO to output the parameters for the four radials
to the CDU.

DESCRIPTION:
If a radial has not been entered, or in the case of the

computed abeam, dashes will be displayed. For entered
radials (i, 2, 3), if there is no intersection of a straight
leg in the path, only the radial value will be displayed.
When these radials intersect a straight leg, the radial
value, distance between the fix and the intercept point,
distance to go along the path from the aircraft's current

position to the intercept point, and the desired altitude

at the intercept point will be displayed. These parameters

are also displayed for the abeam radial if one has been

previously computed.

The input parameter LINE is the CDU line being

output and the INDEX is the radial index (1-4). All actual

CDU output is handled through calls to FMTOUT.

GLOBAL REFERENCES:

VARIABLES

PG

ARRAYS

DASHES

RECORD ARRAYS

FIX

FUNCTIONS AND SUBROUTINES

CDU SMALL FMTOUT OTS$CVT L TI



-394-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

FIX INP
FIX?FOR
SLOW
FIX INFO
CALL FIX INP(PASS)

PURPOSE:
The purpose of this routine is to determine the type

of user input and call the appropriate input processing
routine.

DESCRIPTION:
This routine is called by FIX INFO any time a user

input is detected. If an LSK has been pressed and there
is no data on the scratch pad, FUNC INP FIX is called.
If a deletion is attempted by the us--er _data is "DELETE"),
DEL_FIX is called. All other data inputs will be handled

by calling DATA INP FIX.

GLOBAL REFERENCES:

ARRAYS

ENTRY

FUNCTIONS AND SUBROUTINES

DATA INP FIX DEL FIX DEL IN FUNC INP FIX



-395-

MODULENA/ME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

FUNC INP FIX
FIX.FOR
SLOW
FIX INP
CALL FUNC INP FIX (PASS)

PURPOSE:
The purpose of this routine is to process LSK inputs

in which no data is involved.

DESCRIPTION:
When an LSK has been pressed and there is no data on

the scratch pad, the following applies:

LSK-LI: If a fix name has been previously entered, it will
be written to the scratch pad; otherwise, a "NO
DATA" error message will be output.

LSK-L2,

LSK-L3,

LSK-L4:

If a fix radial exists at the LSK and an intercept

point was found, the latitude and longitude of the

intercept point will be written to the scratch pad.

If the fix radial does not have an intercept point,

a "NO DATA" message is displayed. If a radial has

not yet been entered, a "DEAD KEY ERROR" message

is output.

LSK-L5: If 2D guidance is available (GUID2D on), then
COMP ABRAD is called to find the abeam radial.

If there is no abeam radial, the message "NO ABEAM

RADIAL" will be displayed. If 2D guidance is not

available, the "DEAD KEY ERROR" message is output.

LSK-L6: Circle data is expected. "NO DATA" will be

displayed if a fix has been previously entered and

"DEAD KEY ERROR" will be output otherwise.

LSK-R6: The fix is erased from the CDU and the ND. FIX INIT

is called to reset the fix data structure.

Pressing any of the remaining LSKs will result in a "DEAD

KEY ERROR" message.



-396-

GLOBAL REFERENCES:

VARIABLES
ERCODE* GUID2D PG

ARRAYS
ENTRY

RECORDARRAYS
FIX

FUNCTIONSAND SUBROUTINES
CH FIX PG COMPABRADFIX INIT FMTDEGFMTOUTSTRIPR



-397-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

DATA INP FIX
FIX.FOR --
SLOW
FIX INP
CALL DATA INP FIX

PURPOSE:
This routine handles fix data inputs.

DESCRIPTION:
DATA INP FIX is called by FIX INP whenever an attempt

to input data--via the LSKs is made? The following list
explains what is expected for each LSK.

LSK-LI: Input should be a fix name. If the number of
characters is not 3, 4, or 5, a "BAD DATA FORMAT"
message is output. LUNAVA is called to look up
the fix in AADCOM. If found, the .MAG, .ADDR,
.NAME, .LAT, and .LON fields of the FIX structure
are retrieved from AADCOM. The .TYPE is set
according to the fix type (airport, navaid, or
waypoint). The .NAME LEN field is set to the number
of input characters and the .SET field is set. If

the fix is not found in A2dDCOM, a "NOT FOUND IN

MEMORY" error message is output.

LSK-L2,

LSK-L3,
LSK-L4:

Radials are entered at these LSKs. If 2D guidance

is possible and the entry is a number between 0.0

and 360.0 , COMP RAD is called to find the intercept

point and compute all associated radial information.

LSK-L5: Data is not allowed for the abeam LSK.

DATA ENTRY" will be output.

"INVALID

LSK-L6: A circle whose radius must be between 1 and 99.9

can be entered at this LSK. The .CIRCLE field of

the fix data structure is set to the input value.

If the entry does not fall in this range, a "DATA

OUT OF RANGE" message is output.

LSK-R6: Data is not allowed for the "ERASE>" LSK. "INVALID

DATA ENTRY" will be output.

All other keys are dead keys. Also, if a fix has not yet

been entered, all keys except for LSKLI will be dead keys.

Also note that if any numerical entry cannot be successfully

converted from character to floating point format, a "BAD

DATA FORMAT" message will be output.



-398-

GLOBAL REFERENCES:

VARIABLES

ERCODE* FNAME GUID2D INDAT PG

ARRAYS

ENTRY*

RECORD ARRAYS

FIX*

FUNCTIONS AND SUBROUTINES

COMP RAD GET LONG GET REAL LUARP LUGRP LUNAVA OTS$CVT T F



-399-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

DEL FIX
FIX.FOR
SLOW
FIX_INFO, FIX_INP
CALL DEL FIX

PURPOSE:
This routine handles "DELETE" fix inputs.

DESCRIPTION:
FIX INP and FIX INFO call DEL FIX when a user has

entered "DELETE" as data. The following applies for this
type input:

LSK-LI: The fix page is reinitialized. The associated fix
information drawn on the ND will also be erased.
FIX INIT is called to reset the fix data structure.
The CDU will be ready for a new fix to be entered.

LSK-L2,
LSK-L3,
LSK-L4:

The radial and its associated information is
romoved from the CDU and ND and the appropriate
radial fields of the fix data structure are reset.

LSK-L5: The fix circle is removed from the CDU and ND and
the .CIRCLE field of the fix data structure is set
to zero.

Attempting to delete one of these parameters when it does
not exist results in an "INVALID DELETE" error message. Any
other deletion attempt results in a "DEAD KEY ERROR" error.

GLOBAL REFERENCES:

VARIABLES
ERCODE* PG

ARRAYS
ENTRY

RECORDARRAYS
FIX

FUNCTIONS AND SUBROUTINES
FIX INIT



-400-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

CH FIX PG

FIX. FOR

SLOW

FIX INFO

CALL CH FIX PG(PG)

PURPOSE:

This routine handles page changes between the two fix

pages.

DESCRIPTION:

When the user has pressed the PREV or NEXT CDU panel

buttons, FIX_INFO calls CH_FIX_PG to set the current page

variable PG so that the inactive fix page becomes active.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES

FMTOUT



-401-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

FIX INIT
FIX?FOR
SLOW
FUNC_INP_FIX, DEL_FIX
CALL FIX INIT

PURPOSE:
This routine reinitializes those variables necessary

to erase a fix page.

DESCRIPTION:
When a user wishes to erase a fix from the CDU and the

ND, FUNC INP FIX and DEL FIX calls FIX INIT to reset

the fields of the fix structure so that the fix will no

longer be displayed.

GLOBAL REFERENCES:

VARIABLES

PG

RECORD ARRAYS

FIX*



-402-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

COMPABRAD
FIX.FOR
SLOW
FUNC INP FIX

PURPOSE:
This routine attempts to find the shortest abeam radial

between a fix and a straight leg segment of the active path.

DESCRIPTION:
When a user presses the "abeam" line select key (LSKL5)

for a given fix, FUNC INP FIX calls this routine to search
the remainder of the active path for a straight leg segment
in which a radial drawn from the fix to the segment
intersects perpendicularly.

FIND LEG AB is called for each straight leg segment to
perform tee a_tual computations that determine whether the
segment contains an abeam radial. If the aircraft's position
is currently on a straight leg and the cross track error XTK
is less than 200 feet, the unflown portion of that segment
is also considered. A segment is considered to be a
straight leg if either of its waypoint DMA fields are zero
(i.e. WPT ACT(J).DMA = 0 or WPT ACT(J+I).DMA = 0, where J+l
is the 'TO' waypoint of the segment). Once all of the abeams
have been found, FMIN is called to determine which abeam
has the shortest distance between the fix and the intercept
point. It is this abeam that will be displayed on the CDU

and ND. Before exiting COMP ABRAD calls AB IP LL to

compute the intercept point latitude and longitude and

COMP IP DTG to compute the distance to go along the path

to tee Yntercept point. If this distance is greater than

zero meaning the intercept point has not been already

passed, the desired altitude at the intercept point is

also computed.

If no abeams exist, the error message "NO ABEAM

RADIAL" will be output to the CDU.

GLOBAL REFERENCES:

VARIABLES

ACTCNT DTOGO ERCODE* LAT LON PG TOWPT XTK

RECORD ARRAYS

FIX* WPT ACT

FUNCTIONS AND SUBROUTINES

AB IP LL COMP IP DTG FIND LEG AB FMIN MTH$TAND POS INFO

UNITVEC



-403-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

FIND LEG AB
FIX.FOR
SLOW
COMP_ABRAD,COMP_RAD
CALL FIND LEG AB(FR VEC, VEC, FLAT,

FLON, FRLAT, FRLON,
PTR, DIST)

PURPOSE:
The purpose of this routine is to find out if an

abeam radial exists for a given straight leg path segment.

DESCRIPTION:

FIND LEG AB calls COMP ANG to compute two angles whose

values tell whether or not a segment contains an abeam

radial for a fix. The first angle is the one which

contains the leg's FROM and TO waypoints and the fix

location. The vertex of this angle is the TO waypoint

location. The second angle contains the same points except

that the vertex is the FROM waypoint. If these two angles

are both acute angles, an abeam radial must exist for the

leg. If an abeam is found, the distance between the fix and

the intercept point is computed. This distance must be

greater than 100 feet or the abeam will be rejected.

GLOBAL REFERENCES:

RECORD ARRAYS

WPT ACT

FUNCTIONS AND SUBROUTINES

COMP ANG FIX ERAD MTH$ATAN2 VDP



-404-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

UNITVEC

FIX.FOR

SLOW

COMPABRAD, COMP RAD

CALL UNITVEC(ULAT, ULON, UVEC)

PURPOSE:

This routine computes a unit vector (UVEC) from the

earth's center to a position given by its latitude (ULAT)

and longitude (ULON)

DESCRIPTION:

This routine is called when a unit vector from the

earth's center to the given latitude and longitude is needed

in COMP ABRAD and COMP RAD computations.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES

MTH$COSD MTH$SIND



-405-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

FMIN
FIX.FOR
SLOW
COMPABRAD, COMPRAD
CALL FMIN(X, CNT)

PURPOSE:
This routine searches the array X for a minimum value

greater than zero and returns its position CNT in the array.

DESCRIPTION:
A simple loop is used to find the minimum value greater

than zero in the array. If all elements are less than zero,
CNT is returned as zero.

GLOBAL REFERENCES:none



-406-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

FIX ERAD
FIX.FOR
SLOW
FIND LEGAB, COMPRAD
CALL FIX ERAD(ALTI, RADI, LATFT, LONFT)

PURPOSE:
This routine computes the earth radius for a given

position.

DESCRIPTION:
East/west and north/south values are computed for a

given position and are then used to compute a local "feet
per degree" value for latitude and longitude at that
position.

GLOBAL REFERENCES:

VARIABLES
LAT

FUNCTIONS AND SUBROUTINES
MTH$COSDMTH$SIND



-407-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

AB IP LL
FIX.FOR
SLOW
COMPABRAD, COMPRAD
CALL AB_IP_LL (VECT, PTR, TMP_LAT, TMP LON)

PURPOSE:
The purpose of this routine is to compute the latitude

and longitude of an intercept point between an abeam radial
and a given path segment.

DESCRIPTION:
Given the abeam input vector (VECT) and the normal

vector WPT_ACT(PTR).NMV, the intercept point latitude
(TMP_LAT) and longitude (TMP_LON) are computed using
vector algebra.

GLOBAL REFERENCES:

RECORDARRAYS
WPTACT

FUNCTIONS AND SUBROUTINES
MTH$ASIND MTH$COSDVDP



-408-

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:

COMP RAD

FIX.FOR

SLOW

DATA INP FIX

CALL--COMP RAD(VAL, INDEX)

PURPOSE:
This routine is called to find an intercept point

between a radial and a straight leg segment of the unflown

portion of the active path.

DESCRIPTION:

A user is able to enter up to 3 radials (other than

the abeam radial) per fix. These radials have values

between 0.0 and 360.0 degrees. Each time a radial is

entered, this routine is called by DATA INP FIX to see if

the radial intersects a straight leg seg--men[ of the unflown

active path. Passed as inputs are the radial value in

degrees (VAL) and the radial index (i, 2, or 3) INDEX.
If the current path leg is a straight segment, COMP RAD

first checks to see if there is an intercept point between

the aircraft's current position and the 'TO' waypoint.

FIND LEG RAD is called to actually do the computations

needed t_ determine if the correct geometry for intersection

exists. The remaining straight legs are then searched.

Once all intercept points have been found, FMIN is called to

determine which radial has the shortest distance from the

fix to the intercept point. This distance, however, must

be greater than 100 feet or it will not be considered.
If no intercept points were found, only the radial

value will be displayed on the CDU. The radial will still

be drawn on the ND.

If a minimal distance intercepting radial

is found, the intercept point latitude, longitude, and

altitude are computed. Also, COMP_IP_DTG is called to

compute the aircraft's distance to go along the path to the

intercept point. Displayed on the CDU radial line is the

radial value, distance in nautical miles from the fix to

the intercept point, aircraft distance to go in nautical

miles to the intercept point, and the aircraft's desired

altitude in feet at the intercept point.

GLOBAL REFERENCES:

VARIABLES

ACTCNT DTOGO LAT LON PG TOWPT XTK

RECORD ARRAYS

FIX* WPT ACT

FUNCTIONS AND SUBROUTINES

AB IP LL COMP IP DTG FIND LEG AB FIND LEG_RAD FIX_ERAD

FMIN MTH$COSD MTH$SIND MTH$TAND UNITVEC



-409-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

FIND LEG PAD
FIX.FOR
SLOW
COMPRAD
CALL FIND_LEG_RAD(FRLAT, FRLON, FLAT,

FLON, TOLAT, TOLON,
PTOPD, VAL, PTR, DIST)

PURPOSE:
The purpose of this routine is to find an intercept

point between a fix radial and a straight leg segment.

DESCRIPTION:
Given input latitudes and longitudes for the 'TO' and

'FROM' waypoints of the path segment and the fix, FIND LEG RAD
is able to determine whether or not an intercept point-- --
exists. It does this by computing two bearings: one from
the fix to the FROMwaypoint of the segment and the other
from the fix to the 'TO' waypoint. If the radial value lies
between these two bearings, an intercept point must exist
and the distance between the fix and the intercept point
will be computed.

GLOBAL REFERENCES:

VARIABLES
PG

RECORDARRAYS
FIX

FUNCTIONS AND SUBROUTINES
COMP_ANGFANG GRID MTH$ATAND2MTH$COSDMTH$SIND MTH$SQRT



-410-

MODULEN;_4E:
FILE N_ME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

F ANG(X, Y, ANG)
FIX.FOR
SLOW
FIND LEG RAD

PURPOSE:
This routine is called to find the angle between two

given bearings that share a common vertex.

DESCRIPTION:
The bearing inputs X and Y have values between -180.0

and 180.0 degrees. The angle between the bearings will be
returned in ANG as a value between 0.0 and 360.0 degrees.



-411-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

COMPANG
FIX.FOR
SLOW
FIND LEG AB, FIND LEG RAD
CALL COMPANG(LTI, LNI, LT2, LN2, LT3,

LN3, ANG)

PURPOSE:
This routine computes the angle between a vertex

point and two other points.

DESCRIPTION:
The latitudes and longitudes of three points are passed

in as parameters. The second lat/lon pair is the vertex.
The computation is a matter of simple geometry. The angle
is stored in ANG and will have value between 0.0 and 360.0
degrees.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
GRID MTH$ATAND2



-412-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

POS INFO
FIX.FOR
SLOW
FIX INFO, COMPABRAD
CALL FIX INFO(LTI, LNI, LT2, LN2, DIST,

BRG)

PURPOSE:
The purpose of this routine is to compute the magnetic

bearing (degrees) and distance (feet) between two points.

DESCRIPTION:
POS INFO is called whenever bearing and distance are

needed between two points. It uses the latitudes and
longitudes of the two points to perform the computations.
The bearing will be returned as a value between 0.0 and
360.0 degrees.

GLOBAL REFERENCES:

VARIABLES
PG

RECORDARRAYS
FIX

FUNCTIONS AND SUBROUTINES
GRID MTH$ATAND2MTH$SQRT



-413-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

COMPIP DTG
FIX.FOR
SLOW
FIX INFO, COMPABRAD, COMPRAD
CALL COMPIP DTG(PG, INDEX7 DTGO)

PURPOSE:
This routine is called to compute the distance along

the path from the aircraft's current position to a radial's
intercept point on the path.

DESCRIPTION:

COMP IP DTG is called every time FIX INFO is called

to compute the distance to the intercept point for the

active fix (PG) and the given radial index (INDEX). It

sums I) the distance from the current position to the 'TO'

waypoint, 2) the distances of the path legs up to the

waypoint just before the intercept point, and 3) the

distance from that waypoint to the intercept point. If

the intercept point has already been passed, there is

no computation to perform and only the radial value will

be displayed. In this case DTGO is passed back as zero.
COMP ABRAD and COMP RAD also call this routine. If

the distance returned is zero, these routines do not

attempt to compute the desired aircraft altitude at the

intercept point.

GLOBAL REFERENCES:

VARIABLES

DTOGO LAT LON TOWPT

RECORD ARRAYS

FIX* WPT ACT

FUNCTIONS AND SUBROUTINES

GRID MTH$SQRT



-414-

MODULENAME:
FILE NAME:
PROCESS:
CALLED BY:
CALLING SEQUENCE:

FIX DISP
FIX.FOR
SLOW
FIX INFO
CALL FIX DISP

PURPOSE:
This routine sets the parameters used by the displays

computer to display fix information on the Navigation
Display.

DESCRIPTION:
FIX INFO calls this routine every time the executive

calls FIX INFO. The global integer array FIXWRD(2) has bit
patterns that are set by FIX DISP. FIXWRD is used by the
displays computer to graphically represent the fix(es) and
radials. FIXWRD(1) is used for the first fix and FIXWRD(2)
is used for the second page. The bit patterns for each
word are:

bit 0:
bit I:
bit 2:
bit 3:
bit 4 :
bit 12 :
bit 13 :
bit 14:

set if a fix has been entered
set if first radial has been entered
set if second radial has been entered
set if third radial has been entered
set if abeam has been computed
set if fix is a navaid
set if fix is a waypoint
set if fix is an airport

If the conditions for setting a bit do not exist it remains
cleared. Also set for use in the displays computer and ND
are the following global variables:

FIXADD: address of fix in AADCOM
FIXCIR: fix circle radius
FIXRAD(I - 4): radial values

GLOBAL REFERENCES:

VARIABLES
FIXADD* FIXCIR* FIXRAD* FIXWRD*

RECORDARRAYS
FIX



-415-

Appendix A PATH DEFINITION COMPUTATIONS

*** THE WAYPOINT UNIT VECTOR ***

The unit vector from the Earth center pointing to a global

posltlon (latltude & longltude) Is defined in the guldance vector

coordlnate system as shown below.

W_P = [SIN(LAT), -COS(LAT) SIN(LON), COS(LAT) COS(LON)]

The elements of this vector are stored in the waypolnt buffer

structure element labeled WPT_MOD(1).WPV. The figure below

descrlbes the coordlnate system Involved in the guidance vector

computat ions.

X (North Pole)

Equator

Greenwlch

Meridian

. Longitude measured in degrees east of the Greenwich meridian

. Latitude measured in degrees north of the equator



-416-

*** THE NORMAl. UNIT VECTOR ***

The normal unlt vector Is calculated as follows.

.-% .,% .,,..
_(i) = WP(i-I) x WP(i); NM(i) = / I 'M(i)I

The elements of these vectors are stored In the waypolnt buffer

element labeled WPT_MOO(1).NMU. The figure below deplcts the
relatlonshlp between the normal unlt vector and its associated

waypolnt unlt vector palr.

..%
WP(i) W"P(i+I)

NM(i+I )

*** TURN ANGLE (TA) BETWEEN WAYPOINTS ***

The normal unit vector and the waypoint unit vectors are used

to compute the track angle change between waypoints by using the

fol lowing equat ions.
..%

SIN_TA = -I_ (i) x NM(i+I) . W'_(i)
.-% /%

COS_TA = NM(i) . NM(i+I)

TA = ARCTAN2(SIN_TA, COS_TA)

The turn angle at each waypolnt, except the first and last on the

fllght plan or DMA turn waypolnts, is stored in the waypoint
structure under the label WPT_MOD(i).TR.

*** RADIUS OF TURN ***

The following llst shows the three ways the turn radlus at a

waypolnt may be deflned. They are llsted in the order of hlghest

priority.

Asslgned dlrectly from the CDU.

Default from system database when waypoint is part of a defined
route functlon.

When a ground speed Is deflned at the waypolnt, the equatlon
R = GS ** 2 / (G * TAN_15_DEG).

When the waypolnt altltude is assigned, and greater than 15000

feet, the radlus is set to 50000 feet.
Radius is set to 15000 feet.



-417-

*** TURNARCLENGTH ***

The arc length calculatlon Is performed for all waypolnts except

DMA arc waypolnts, The value computed and stored is actually one
half the turn arc length because of the way It Is used by other soft-

ware, The following formula Is used in the calculatlon.

HALF_ARC = TURN_RAD * TURN_ANG_RADIANS / 2

The computed value is stored In the waypolnt buffer element
WPT_MOD(i),ARC2,

Tangent _.slWaypoint

Distancee1_1-f'T'-..

,rc , I

\ I // Turn
\ : H Rod
\ i //
\, i,,Y

*** THE DISTANCE TO THE TANGENT POINT (DTT) ***

The distance between a waypolnt and either tangent point is
computed as follows,

DTT = TURN_ANG [SIN(TA) / (I + COS(TA))]

Note that SIN(TA) I (I + COS(TA)) is identical to TAN(TA 1 2),

The flrst form is used because the sine and cosine both already

exist from the turn angle calculatlon. The tangent distance is

stored in the waypoint buffer element WPT_MOD(1),DTT,

the waypoint to tangent point vector (TNGT).

by the following equatlon.
_.. ..... ..%
TNGT = DTT [WP x NM]

The flgure to the right depicts the
nature of the approxlmatlon, Note that

the difference shown is highly exaggerated to
emphasize the polnt. In real conditions the

arc dlstance to the tangent point is extremely
small compared to the earth's radius.

*** THE TURH CENTER VECTOR (TCV) ***

The first step In flndlng the turn center vector Is to compute
This vector is approximated

Tangent
Waypolnt_ Actual oPoint

l !
t I
l I
l I
t I
l !
l I
l I

l /Earth
I / RadiusI

I I
tl
¥



-418-

Next the vector fom the earth's center to the tangent point (TP) Is

computed as follows.

TP = ERRTH_RAD WP + TNGT

The turn center vector calculations proceed as shown below. Note

that the "+/-" shown means add in a left turn and subract in a

right turn.
_.. =.., A'% ,'% ---- ,--,,
TCU = TP +/- (TURN_RRD NM); TCU = TCU / ITCVI

The turn center vector Is saved as WPT_MOD(i).TCU

*** THE DISTANCE BETWEEN WAYPOINTS (PPD) ***

The distance between waypolnts, "point to point" distance, is

found by computlng the angle (radlans) between successlve wagpoint
The computed value is savedvectors. The ecluatlons are shown below.

as WPT_MOD( I).PPD_

SIN_t = IWP(i-I) x WP(i)I

PPD = EARTH_RAD ARCSIN(SIN_$)

Waypoint _Waypolnt

% l
I

I I
I I
I I
I I
% !

l /Eartht

I / Radius%
% !
II
V

*** CENTER OF TURN LEG DISTANCE (CCD) ***

The along path distance between waypolnts, turn center to turn

center, Is computed from the polnt to point distance by adjustlng

each end of the polnt to polnt line. The adjustment Is performed
as follows.

CCD(i) = PPD(i) - DTT(i) + ARC(i) - DTT(i-I) + ARC(i-I)

Note that no adjustment is performed for leg ends havlng a OMA

turn waypolnt slnce no DTT or ARC dlstances are deflned. The

resultlng path dlstance Is saved as WPT_MOD(1).CCD.

., ................................................ PPO ................................ ,.

Waypoint _-_

Turn Cente_

L___ur Wayp°Int

n Center



-419-

*** THE FLIGHT PATH ANGLE (FPA) ***

The flight path gradient between successive waypoints Is

approximated from the along path distance between waypoints and

the change In asslgned altltudes. The computed value is actually

the tangent of the fllght path angle, however it wlll approximate

the desired number for the small flight path angles typically on

the fllght plan.

FPA_RADIANS = (ALT(i) - ALT(i-I)) I CCD(i)

The value Is converted to degrees and stored in WPT_MOD(i).FPA.

*** THE PATH LEG TIME ***

The tlme required to fly a leg of the fllght plan is computed

when ground speeds (GS) are deflned for both leg end waypoints.

TIME(i) = 2 CCD(i) / (GS(i) + GS(i-I))

Note that the ground speeds must be converted to feet per second
before use (stored as knots) since the path dlstance (CCD) is

deflned In feet. The resultlng value of leg time is saved in
WPT_MOD( i).TIME.

*** DMA ARC COMPUTATIONS ***

The DMA arc reference waypolnt posltlon, projection bearing and

turn angle are predeflned In the navlgatlon database. The

position of the projected waypolnt and along path distance are
computed as follows.

LAT = LAT_REF + TURN_RAD COS(BRNG) / DLATFT

LON = LON_REF + TURN_RAD SIN(BRNG) / DLONFT

CCD = TURN_ANGLE_RADIANS TURN_RAD

Note that DLATFT and DLONFT are the number of degrees per foot in

latltude and longltude respectlvely, defined for the locallty of
the current turn center.

Projected
Inbound / _ Outbound

Waypoi nt/.... Turn //_aypo,nt

BearingS. _"
_v Reference

gaypoint



i

REPORT DOCUMENTATION PAGE FormApproved
OM8,yD.oTo_,aa

Public repOrtmg burden for this ,:ollection of information *s e,,tlmated to avecaqe 1 hour per re_oon_e, including the time for reviewing instructions. _arching existing data sOclrces.
gathering and maintaining lhe data needed, and completmg and reviewing the collection of information. ¢_en¢l comments regarding this burden e_timate or any other aw_'<t of th s

collectiOn Of information, including sugg¢_tio_ for reducing thl_ burden to Washington Headquarters Services. DirectOrateTo." Information Operations and Reports. 1215 Jefferson
Daws Highway. Sucre 1204. Arhnglon. VA 22202-4 |0;_. al_l to the. Offl, e Of Mana_Jemq.n! .ind Budget. Paperwork Reduction Project (0/04-0 ! 08). Washington. DC 2050].

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE I 3. REPORT TYPE AND DATES COVERED

January 1992 I Contractor Report

4. TITLEANDSUBTITLEAdvanced Transport Operating System s. FUNOINGNUMBERS

(ATOPS) Control Display Unit Software Description

6. AUTHOR(S)

Christopher J. S1ominski William J. Heaphy
Mark A. Parks

Kelly R. Debure

7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES)

Computer Sciences Corporation
3217 N. Armistead Avenue

Hampton, Virginia 23666-1379

g. SPONSORING/MONITORING AGENCY NAME(S) AND ADORESS(ES)

National Aeronautics and Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

C NAS1-19038

WU 505-64-13-11

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

NASA CR-189606

11. SUPPLEMENTARY NOTES

Langley Technical Monitor:

IZa.DISTRIBUTION/AVAILABILITYSTATEMENT

Unclassified - Unlimited

Subject Category 06

Dr. James R. Schiess (COTR)
Robert A. Kudlinski

12b. DISTRIBUTION CODE

j,

_. ABSTRACT (Maximum 200 words)

his document describes the software created for the Lear-Siegler Control Display

Units (CDUs) used for the Advanced Transport Operating Systems (ATOPS) project on

the Transport Systems Research Vehicle (TSRV). The software delivery of April
1991, known as the "baseline system", is the one described in this document.

Throughout this publication, module descriptions are presented in a standardized

format which contains module purpose, calling sequence, detailed description and
global references. The global reference section incl_udes subroutines, functions

and common variables referenced by a particular module.

The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD

contains two Lear-Siegler CDUs, one for the pilot and copilot, which are used for

flight management purposes. Operations performed with the CDU affects the aircraft'

guidance, navigation, and display software.

14. SUBJECT TERMS Aircraft Navigation Systems
Flight Management Systems _lass Cockpit

Control Display Unit

Flight Planning

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

"NSN 7540-01-280-5500

F1ight Management
bompu _er

Area Navigation Software

Electronic Flight Instrumentation System

18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF THIS PAGE OF ABSTRACT

Uncl assi fied Uncl ass ified

15. NUMBER OF PAGES

42O

1,. P_(_ CODE

20. LIMITATION OF ABS TRACT

Standard Form 29B (Rev 2-89)
Pr_,crlbed by ANSI $td Z39-18
298-102






